Abstract:Many early neural Information Retrieval (NeurIR) methods are re-rankers that rely on a traditional first-stage retriever due to expensive query time computations. Recently, representation-based retrievers have gained much attention, which learns query representation and document representation separately, making it possible to pre-compute document representations offline and reduce the workload at query time. Both dense and sparse representation-based retrievers have been explored. However, these methods focus on finding the representation that best represents a text (aka metric learning) and the actual retrieval function that is responsible for similarity matching between query and document is kept at a minimum by using dot product. One drawback is that unlike traditional term-level inverted index, the index formed by these embeddings cannot be easily re-used by another retrieval method. Another drawback is that keeping the interaction at minimum hurts retrieval effectiveness. On the contrary, interaction-based retrievers are known for their better retrieval effectiveness. In this paper, we propose a novel SEgment-based Neural Indexing method, SEINE, which provides a general indexing framework that can flexibly support a variety of interaction-based neural retrieval methods. We emphasize on a careful decomposition of common components in existing neural retrieval methods and propose to use segment-level inverted index to store the atomic query-document interaction values. Experiments on LETOR MQ2007 and MQ2008 datasets show that our indexing method can accelerate multiple neural retrieval methods up to 28-times faster without sacrificing much effectiveness.
Abstract:This paper is interested in investigating whether human gaze signals can be leveraged to improve state-of-the-art search engine performance and how to incorporate this new input signal marked by human attention into existing neural retrieval models. In this paper, we propose GazBy ({\bf Gaz}e-based {\bf B}ert model for document relevanc{\bf y}), a light-weight joint model that integrates human gaze fixation estimation into transformer models to predict document relevance, incorporating more nuanced information about cognitive processing into information retrieval (IR). We evaluate our model on the Text Retrieval Conference (TREC) Deep Learning (DL) 2019 and 2020 Tracks. Our experiments show encouraging results and illustrate the effective and ineffective entry points for using human gaze to help with transformer-based neural retrievers. With the rise of virtual reality (VR) and augmented reality (AR), human gaze data will become more available. We hope this work serves as a first step exploring using gaze signals in modern neural search engines.