Abstract:As recruitment and talent acquisition have become more and more competitive, recruitment firms have become more sophisticated in using machine learning (ML) methodologies for optimizing their day to day activities. But, most of published ML based methodologies in this area have been limited to the tasks like candidate matching, job to skill matching, job classification and normalization. In this work, we discuss a novel task in the recruitment domain, namely, application count forecasting, motivation of which comes from designing of effective outreach activities to attract qualified applicants. We show that existing auto-regressive based time series forecasting methods perform poorly for this task. Henceforth, we propose a multimodal LM-based model which fuses job-posting metadata of various modalities through a simple encoder. Experiments from large real-life datasets from CareerBuilder LLC show the effectiveness of the proposed method over existing state-of-the-art methods.
Abstract:We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems on heterogeneous diffusion networks. Our new framework leverages the Mori-Zwanzig formalism to obtain an exact evolution equation of the individual node infection probabilities, which renders a delay differential equation with memory integral approximated by learnable time convolution operators. Directly using information diffusion cascade data, our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities. Connections between parameter learning and optimal control are also established, leading to a rigorous and implementable algorithm for training NMF. Moreover, we show that the projected gradient descent method can be employed to solve the challenging influence maximization problem, where the gradient is computed extremely fast by integrating NMF forward in time just once in each iteration. Extensive empirical studies show that our approach is versatile and robust to variations of the underlying diffusion network models, and significantly outperform existing approaches in accuracy and efficiency on both synthetic and real-world data.
Abstract:We propose a novel learning framework based on neural mean-field dynamics for inference and estimation problems of diffusion on networks. Our new framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities, which renders a delay differential equation with memory integral approximated by learnable time convolution operators, resulting in a highly structured and interpretable RNN. Directly using cascade data, our framework can jointly learn the structure of the diffusion network and the evolution of infection probabilities, which are cornerstone to important downstream applications such as influence maximization. Connections between parameter learning and optimal control are also established. Empirical study shows that our approach is versatile and robust to variations of the underlying diffusion network models, and significantly outperform existing approaches in accuracy and efficiency on both synthetic and real-world data.