Abstract:Knowledge distillation is an effective technique for pre-trained language model compression. Although existing knowledge distillation methods perform well for the most typical model BERT, they could be further improved in two aspects: the relation-level knowledge could be further explored to improve model performance; and the setting of student attention head number could be more flexible to decrease inference time. Therefore, we are motivated to propose a novel knowledge distillation method MLKD-BERT to distill multi-level knowledge in teacher-student framework. Extensive experiments on GLUE benchmark and extractive question answering tasks demonstrate that our method outperforms state-of-the-art knowledge distillation methods on BERT. In addition, MLKD-BERT can flexibly set student attention head number, allowing for substantial inference time decrease with little performance drop.
Abstract:In the clinical diagnosis and treatment of brain tumors, manual image reading consumes a lot of energy and time. In recent years, the automatic tumor classification technology based on deep learning has entered people's field of vision. Brain tumors can be divided into primary and secondary intracranial tumors according to their source. However, to our best knowledge, most existing research on brain tumors are limited to primary intracranial tumor images and cannot classify the source of the tumor. In order to solve the task of tumor source type classification, we analyze the existing technology and propose an attention guided deep convolution neural network (CNN) model. Meanwhile, the method proposed in this paper also effectively improves the accuracy of classifying the presence or absence of tumor. For the brain MR dataset, our method can achieve the average accuracy of 99.18% under ten-fold cross-validation for identifying the presence or absence of tumor, and 83.38% for classifying the source of tumor. Experimental results show that our method is consistent with the method of medical experts. It can assist doctors in achieving efficient clinical diagnosis of brain tumors.