Abstract:Modeling vehicle interactions at unsignalized intersections is a challenging task due to the complexity of the underlying game-theoretic processes. Although prior studies have attempted to capture interactive driving behaviors, most approaches relied solely on game-theoretic formulations and did not leverage naturalistic driving datasets. In this study, we learn human-like interactive driving policies at unsignalized intersections using Deep Fictitious Play. Specifically, we first model vehicle interactions as a Differential Game, which is then reformulated as a Potential Differential Game. The weights in the cost function are learned from the dataset and capture diverse driving styles. We also demonstrate that our framework provides a theoretical guarantee of convergence to a Nash equilibrium. To the best of our knowledge, this is the first study to train interactive driving policies using Deep Fictitious Play. We validate the effectiveness of our Deep Fictitious Play-Based Potential Differential Game (DFP-PDG) framework using the INTERACTION dataset. The results demonstrate that the proposed framework achieves satisfactory performance in learning human-like driving policies. The learned individual weights effectively capture variations in driver aggressiveness and preferences. Furthermore, the ablation study highlights the importance of each component within our model.
Abstract:Pioneers of autonomous vehicles (AVs) promised to revolutionize the driving experience and driving safety. However, milestones in AVs have materialized slower than forecast. Two culprits are (1) the lack of verifiability of proposed state-of-the-art AV components, and (2) stagnation of pursuing next-level evaluations, e.g., vehicle-to-infrastructure (V2I) and multi-agent collaboration. In part, progress has been hampered by: the large volume of software in AVs, the multiple disparate conventions, the difficulty of testing across datasets and simulators, and the inflexibility of state-of-the-art AV components. To address these challenges, we present AVstack, an open-source, reconfigurable software platform for AV design, implementation, test, and analysis. AVstack solves the validation problem by enabling first-of-a-kind trade studies on datasets and physics-based simulators. AVstack solves the stagnation problem as a reconfigurable AV platform built on dozens of open-source AV components in a high-level programming language. We demonstrate the power of AVstack through longitudinal testing across multiple benchmark datasets and V2I-collaboration case studies that explore trade-offs of designing multi-sensor, multi-agent algorithms.