Abstract:Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to their adoption in clinical practice. In this work, we organized the first international competition dedicated to promptable medical image segmentation, featuring a large-scale dataset spanning nine common imaging modalities from over 20 different institutions. The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline that substantially reduced computational requirements while maintaining state-of-the-art segmentation accuracy. Moreover, the post-challenge phase advanced the algorithms through the design of performance booster and reproducibility tasks, resulting in improved algorithms and validated reproducibility of the winning solution. Furthermore, the best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption. The data and code are publicly available to foster the further development of medical image segmentation foundation models and pave the way for impactful real-world applications.
Abstract:Ultra-wide optical coherence tomography angiography (UW-OCTA) is an emerging imaging technique that offers significant advantages over traditional OCTA by providing an exceptionally wide scanning range of up to 24 x 20 $mm^{2}$, covering both the anterior and posterior regions of the retina. However, the currently accessible UW-OCTA datasets suffer from limited comprehensive hierarchical information and corresponding disease annotations. To address this limitation, we have curated the pioneering M3OCTA dataset, which is the first multimodal (i.e., multilayer), multi-disease, and widest field-of-view UW-OCTA dataset. Furthermore, the effective utilization of multi-layer ultra-wide ocular vasculature information from UW-OCTA remains underdeveloped. To tackle this challenge, we propose the first cross-modal fusion framework that leverages multi-modal information for diagnosing multiple diseases. Through extensive experiments conducted on our openly available M3OCTA dataset, we demonstrate the effectiveness and superior performance of our method, both in fixed and varying modalities settings. The construction of the M3OCTA dataset, the first multimodal OCTA dataset encompassing multiple diseases, aims to advance research in the ophthalmic image analysis community.