Abstract:This paper presents an initialization method that can approximate a given approximate Ising model with a high degree of accuracy using the Factorization Machine (FM), a machine learning model. The construction of Ising models using FM is applied to the combinatorial optimization problem using the factorization machine with quantum annealing. It is anticipated that the optimization performance of FMQA will be enhanced through the implementation of the warm-start method. Nevertheless, the optimal initialization method for leveraging the warm-start approach in FMQA remains undetermined. Consequently, the present study compares a number of initialization methods and identifies the most appropriate for use with a warm-start in FMQA through numerical experimentation. Furthermore, the properties of the proposed FM initialization method are analyzed using random matrix theory, demonstrating that the approximation accuracy of the proposed method is not significantly influenced by the specific Ising model under consideration. The findings of this study will facilitate the advancement of combinatorial optimization problem-solving through the use of Ising machines.
Abstract:A black-box optimization algorithm such as Bayesian optimization finds extremum of an unknown function by alternating inference of the underlying function and optimization of an acquisition function. In a high-dimensional space, such algorithms perform poorly due to the difficulty of acquisition function optimization. Herein, we apply quantum annealing (QA) to overcome the difficulty in the continuous black-box optimization. As QA specializes in optimization of binary problems, a continuous vector has to be encoded to binary, and the solution of QA has to be translated back. Our method has the following three parts: 1) Random subspace coding based on axis-parallel hyperrectangles from continuous vector to binary vector. 2) A quadratic unconstrained binary optimization (QUBO) defined by acquisition function based on nonnegative-weighted linear regression model which is solved by QA. 3) A penalization scheme to ensure that the QA solution can be translated back. It is shown in benchmark tests that its performance using D-Wave Advantage$^{\rm TM}$ quantum annealer is competitive with a state-of-the-art method based on the Gaussian process in high-dimensional problems. Our method may open up a new possibility of quantum annealing and other QUBO solvers including quantum approximate optimization algorithm (QAOA) using a gated-quantum computers, and expand its range of application to continuous-valued problems.
Abstract:This paper presents studies on a deterministic annealing algorithm based on quantum annealing for variational Bayes (QAVB) inference, which can be seen as an extension of the simulated annealing for variational Bayes (SAVB) inference. QAVB is as easy as SAVB to implement. Experiments revealed QAVB finds a better local optimum than SAVB in terms of the variational free energy in latent Dirichlet allocation (LDA).
Abstract:This paper studies quantum annealing (QA) for clustering, which can be seen as an extension of simulated annealing (SA). We derive a QA algorithm for clustering and propose an annealing schedule, which is crucial in practice. Experiments show the proposed QA algorithm finds better clustering assignments than SA. Furthermore, QA is as easy as SA to implement.
Abstract:We developed a new quantum annealing (QA) algorithm for Dirichlet process mixture (DPM) models based on the Chinese restaurant process (CRP). QA is a parallelized extension of simulated annealing (SA), i.e., it is a parallel stochastic optimization technique. Existing approaches [Kurihara et al. UAI2009, Sato et al. UAI2009] and cannot be applied to the CRP because their QA framework is formulated using a fixed number of mixture components. The proposed QA algorithm can handle an unfixed number of classes in mixture models. We applied QA to a DPM model for clustering vertices in a network where a CRP seating arrangement indicates a network partition. A multi core processor was used for running QA in experiments, the results of which show that QA is better than SA, Markov chain Monte Carlo inference, and beam search at finding a maximum a posteriori estimation of a seating arrangement in the CRP. Since our QA algorithm is as easy as to implement the SA algorithm, it is suitable for a wide range of applications.