Abstract:Radio remains a pervasive medium for mass information dissemination, with AM/FM stations reaching more Americans than either smartphone-based social networking or live television. Increasingly, radio broadcasts are also streamed online and accessed over the Internet. We present WavePulse, a framework that records, documents, and analyzes radio content in real-time. While our framework is generally applicable, we showcase the efficacy of WavePulse in a collaborative project with a team of political scientists focusing on the 2024 Presidential Elections. We use WavePulse to monitor livestreams of 396 news radio stations over a period of three months, processing close to 500,000 hours of audio streams. These streams were converted into time-stamped, diarized transcripts and analyzed to track answer key political science questions at both the national and state levels. Our analysis revealed how local issues interacted with national trends, providing insights into information flow. Our results demonstrate WavePulse's efficacy in capturing and analyzing content from radio livestreams sourced from the Web. Code and dataset can be accessed at \url{https://wave-pulse.io}.
Abstract:Facial attribute editing using generative models can impair automated face recognition. This degradation persists even with recent identity-preserving models such as InstantID. To mitigate this issue, we propose two techniques that perform local and global attribute editing. Local editing operates on the finer details via a regularization-free method based on ControlNet conditioned on depth maps and auxiliary semantic segmentation masks. Global editing operates on coarser details via a regularization-based method guided by custom loss and regularization set. In this work, we empirically ablate twenty-six facial semantic, demographic and expression-based attributes altered using state-of-the-art generative models and evaluate them using ArcFace and AdaFace matchers on CelebA, CelebAMaskHQ and LFW datasets. Finally, we use LLaVA, a vision-language framework for attribute prediction to validate our editing techniques. Our methods outperform SoTA (BLIP, InstantID) at facial editing while retaining identity.