Abstract:In this paper, we study a RAN resource-slicing problem for energy-efficient communication in an orthogonal frequency division multiple access (OFDMA) based millimeter-wave (mmWave) downlink (DL) network consisting of enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC) services. Specifically, assuming a fixed set of predefined beams, we address an energy efficiency (EE) maximization problem to obtain the optimal beam selection, Resource Block (RB), and transmit power allocation policy to serve URLLC and eMBB users on the same physical radio resources. The problem is formulated as a mixed-integer non-linear fractional programming (MINLFP) problem considering minimum data rate and latency in packet delivery constraints. By leveraging the properties of fractional programming theory, we first transform the formulated non-convex optimization problem in fractional form into a tractable subtractive form. Subsequently, we solve the transformed problem using a two-loop iterative algorithm. The main resource-slicing problem is solved in the inner loop utilizing the difference of convex (DC) programming and successive convex approximation (SCA) techniques. Subsequently, the outer loop is solved using the Dinkelbach method to acquire an improved solution in every iteration until it converges. Our simulation results illustrate the performance gains of the proposed methodology with respect to baseline algorithms with the fixed and mixed resource grid models.
Abstract:This work considers the orthogonal frequency division multiple access (OFDMA) technology that enables multiple unmanned aerial vehicles (multi-UAV) communication systems to provide on-demand services. The main aim of this work is to derive the optimal allocation of radio resources, 3D placement of UAVs, and user association matrices. To achieve the desired objectives, we decoupled the original joint optimization problem into two sub-problems: i) 3D placement and user association and ii) sum-rate maximization for optimal radio resource allocation, which are solved iteratively. The proposed iterative algorithm is shown via numerical results to achieve fast convergence speed after less than 10 iterations. The benefits of the proposed design are demonstrated via superior sum-rate performance compared to existing reference designs. Moreover, the results declared that the optimal power and sub-carrier allocation helped mitigate the co-cell interference that directly impacts the system's performance.
Abstract:Cohesive Distributed Satellite Systems (CDSS) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSS. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSS. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for DSS. First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSS in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on ML. Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.