Abstract:Schizophrenia (SCZ) is a brain disorder where different people experience different symptoms, such as hallucination, delusion, flat-talk, disorganized thinking, etc. In the long term, this can cause severe effects and diminish life expectancy by more than ten years. Therefore, early and accurate diagnosis of SCZ is prevalent, and modalities like structural magnetic resonance imaging (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI), and electroencephalogram (EEG) assist in witnessing the brain abnormalities of the patients. Moreover, for accurate diagnosis of SCZ, researchers have used machine learning (ML) algorithms for the past decade to distinguish the brain patterns of healthy and SCZ brains using MRI and fMRI images. This paper seeks to acquaint SCZ researchers with ML and to discuss its recent applications to the field of SCZ study. This paper comprehensively reviews state-of-the-art techniques such as ML classifiers, artificial neural network (ANN), deep learning (DL) models, methodological fundamentals, and applications with previous studies. The motivation of this paper is to benefit from finding the research gaps that may lead to the development of a new model for accurate SCZ diagnosis. The paper concludes with the research finding, followed by the future scope that directly contributes to new research directions.
Abstract:In the human brain, essential iron molecules for proper neurological functioning exist in transferrin (tf) and ferritin (Fe3) forms. However, its unusual increment manifests iron overload, which reacts with hydrogen peroxide. This reaction will generate hydroxyl radicals, and irons higher oxidation states. Further, this reaction causes tissue damage or cognitive decline in the brain and also leads to neurodegenerative diseases. The susceptibility difference due to iron overload within the volume of interest (VOI) responsible for field perturbation of MRI and can benefit in estimating the neural disorder. The quantitative susceptibility mapping (QSM) technique can estimate susceptibility alteration and assist in quantifying the local tissue susceptibility differences. It has attracted many researchers and clinicians to diagnose and detect neural disorders such as Parkinsons, Alzheimers, Multiple Sclerosis, and aging. The paper presents a systematic review illustrating QSM fundamentals and its processing steps, including phase unwrapping, background field removal, and susceptibility inversion. Using QSM, the present work delivers novel predictive biomarkers for various neural disorders. It can strengthen new researchers fundamental knowledge and provides insight into its applicability for cognitive decline disclosure. The paper discusses the future scope of QSM processing stages and their applications in identifying new biomarkers for neural disorders.