Abstract:Schizophrenia (SCZ) is a brain disorder where different people experience different symptoms, such as hallucination, delusion, flat-talk, disorganized thinking, etc. In the long term, this can cause severe effects and diminish life expectancy by more than ten years. Therefore, early and accurate diagnosis of SCZ is prevalent, and modalities like structural magnetic resonance imaging (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI), and electroencephalogram (EEG) assist in witnessing the brain abnormalities of the patients. Moreover, for accurate diagnosis of SCZ, researchers have used machine learning (ML) algorithms for the past decade to distinguish the brain patterns of healthy and SCZ brains using MRI and fMRI images. This paper seeks to acquaint SCZ researchers with ML and to discuss its recent applications to the field of SCZ study. This paper comprehensively reviews state-of-the-art techniques such as ML classifiers, artificial neural network (ANN), deep learning (DL) models, methodological fundamentals, and applications with previous studies. The motivation of this paper is to benefit from finding the research gaps that may lead to the development of a new model for accurate SCZ diagnosis. The paper concludes with the research finding, followed by the future scope that directly contributes to new research directions.
Abstract:Structural alterations have been thoroughly investigated in the brain during the early onset of schizophrenia (SCZ) with the development of neuroimaging methods. The objective of the paper is an efficient classification of SCZ in 2 different classes: Cognitive Normal (CN), and SCZ using magnetic resonance imaging (MRI) images. This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for SCZ diagnosis using MRI images. In the proposed model, lightweight 3D CNN is used to extract both spatial and spectral features simultaneously from 3D volume MRI scans, and classification is done using an ensemble bagging classifier. Ensemble bagging classifier contributes to preventing overfitting, reduces variance, and improves the model's accuracy. The proposed algorithm is tested on datasets taken from three benchmark databases available as open-source: MCICShare, COBRE, and fBRINPhase-II. These datasets have undergone preprocessing steps to register all the MRI images to the standard template and reduce the artifacts. The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques. The performance metrics evidenced the use of this model to assist the clinicians for automatic accurate diagnosis of SCZ.