Abstract:In the realm of competitive sports, understanding the performance dynamics of athletes, represented by the age curve (showing progression, peak, and decline), is vital. Our research introduces a novel framework for quantifying age-specific treatment effects, enhancing the granularity of performance trajectory analysis. Firstly, we propose a methodology for estimating the age curve using game-level data, diverging from traditional season-level data approaches, and tackling its inherent complexities with a meta-learner framework that leverages advanced machine learning models. This approach uncovers intricate non-linear patterns missed by existing methods. Secondly, our framework enables the identification of causal effects, allowing for a detailed examination of age curves under various conditions. By defining the Age-Conditioned Treatment Effect (ACTE), we facilitate the exploration of causal relationships regarding treatment impacts at specific ages. Finally, applying this methodology to study the effects of rest days on performance metrics, particularly across different ages, offers valuable insights into load management strategies' effectiveness. Our findings underscore the importance of tailored rest periods, highlighting their positive impact on athlete performance and suggesting a reevaluation of current management practices for optimizing athlete performance.
Abstract:Synthetic data generation has emerged as a crucial topic for financial institutions, driven by multiple factors, such as privacy protection and data augmentation. Many algorithms have been proposed for synthetic data generation but reaching the consensus on which method we should use for the specific data sets and use cases remains challenging. Moreover, the majority of existing approaches are ``unsupervised'' in the sense that they do not take into account the downstream task. To address these issues, this work presents a novel synthetic data generation framework. The framework integrates a supervised component tailored to the specific downstream task and employs a meta-learning approach to learn the optimal mixture distribution of existing synthetic distributions.