Abstract:Explainability plays a crucial role in providing a more comprehensive understanding of deep learning models' behaviour. This allows for thorough validation of the model's performance, ensuring that its decisions are based on relevant visual indicators and not biased toward irrelevant patterns existing in training data. However, existing methods provide only instance-level explainability, which requires manual analysis of each sample. Such manual review is time-consuming and prone to human biases. To address this issue, the concept of second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level. SOXAI automates the analysis of the connections between quantitative explanations and dataset biases by identifying prevalent concepts. In this work, we explore the use of this higher-level interpretation of a deep neural network's behaviour to allows us to "explain the explainability" for actionable insights. Specifically, we demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
Abstract:In electronics manufacturing, solder joint defects are a common problem affecting a variety of printed circuit board components. To identify and correct solder joint defects, the solder joints on a circuit board are typically inspected manually by trained human inspectors, which is a very time-consuming and error-prone process. To improve both inspection efficiency and accuracy, in this work we describe an explainable deep learning-based visual quality inspection system tailored for visual inspection of solder joints in electronics manufacturing environments. At the core of this system is an explainable solder joint defect identification system called SolderNet which we design and implement with trust and transparency in mind. While several challenges remain before the full system can be developed and deployed, this study presents important progress towards trustworthy visual inspection of solder joints in electronics manufacturing.