Abstract:Recent advances in computer vision (CV) and natural language processing have been driven by exploiting big data on practical applications. However, these research fields are still limited by the sheer volume, versatility, and diversity of the available datasets. CV tasks, such as image captioning, which has primarily been carried out on natural images, still struggle to produce accurate and meaningful captions on sketched images often included in scientific and technical documents. The advancement of other tasks such as 3D reconstruction from 2D images requires larger datasets with multiple viewpoints. We introduce DeepPatent2, a large-scale dataset, providing more than 2.7 million technical drawings with 132,890 object names and 22,394 viewpoints extracted from 14 years of US design patent documents. We demonstrate the usefulness of DeepPatent2 with conceptual captioning. We further provide the potential usefulness of our dataset to facilitate other research areas such as 3D image reconstruction and image retrieval.
Abstract:Understanding the spread of images across the web helps us understand the reuse of scientific visualizations and their relationship with the public. The "Flatten the Curve" graphic was heavily used during the COVID-19 pandemic to convey a complex concept in a simple form. It displays two curves comparing the impact on case loads for medical facilities if the populace either adopts or fails to adopt protective measures during a pandemic. We use five variants of the "Flatten the Curve" image as a case study for viewing the spread of an image online. To evaluate its spread, we leverage three information channels: reverse image search engines, social media, and web archives. Reverse image searches give us a current view into image reuse. Social media helps us understand a variant's popularity over time. Web archives help us see when it was preserved, highlighting a view of popularity for future researchers. Our case study leverages document URLs can be used as a proxy for images when studying the spread of images online.
Abstract:Much computer vision research has focused on natural images, but technical documents typically consist of abstract images, such as charts, drawings, diagrams, and schematics. How well do general web search engines discover abstract images? Recent advancements in computer vision and machine learning have led to the rise of reverse image search engines. Where conventional search engines accept a text query and return a set of document results, including images, a reverse image search accepts an image as a query and returns a set of images as results. This paper evaluates how well common reverse image search engines discover abstract images. We conducted an experiment leveraging images from Wikimedia Commons, a website known to be well indexed by Baidu, Bing, Google, and Yandex. We measure how difficult an image is to find again (retrievability), what percentage of images returned are relevant (precision), and the average number of results a visitor must review before finding the submitted image (mean reciprocal rank). When trying to discover the same image again among similar images, Yandex performs best. When searching for pages containing a specific image, Google and Yandex outperform the others when discovering photographs with precision scores ranging from 0.8191 to 0.8297, respectively. In both of these cases, Google and Yandex perform better with natural images than with abstract ones achieving a difference in retrievability as high as 54\% between images in these categories. These results affect anyone applying common web search engines to search for technical documents that use abstract images.