Abstract:We introduce IsraParlTweet, a new linked corpus of Hebrew-language parliamentary discussions from the Knesset (Israeli Parliament) between the years 1992-2023 and Twitter posts made by Members of the Knesset between the years 2008-2023, containing a total of 294.5 million Hebrew tokens. In addition to raw text, the corpus contains comprehensive metadata on speakers and Knesset sessions as well as several linguistic annotations. As a result, IsraParlTweet can be used to conduct a wide variety of quantitative and qualitative analyses and provide valuable insights into political discourse in Israel.
Abstract:Media Storms, dramatic outbursts of attention to a story, are central components of media dynamics and the attention landscape. Despite their significance, there has been little systematic and empirical research on this concept due to issues of measurement and operationalization. We introduce an iterative human-in-the-loop method to identify media storms in a large-scale corpus of news articles. The text is first transformed into signals of dispersion based on several textual characteristics. In each iteration, we apply unsupervised anomaly detection to these signals; each anomaly is then validated by an expert to confirm the presence of a storm, and those results are then used to tune the anomaly detection in the next iteration. We demonstrate the applicability of this method in two scenarios: first, supplementing an initial list of media storms within a specific time frame; and second, detecting media storms in new time periods. We make available a media storm dataset compiled using both scenarios. Both the method and dataset offer the basis for comprehensive empirical research into the concept of media storms, including characterizing them and predicting their outbursts and durations, in mainstream media or social media platforms.
Abstract:In this work we propose a novel annotation scheme which factors hate speech into five separate discursive categories. To evaluate our scheme, we construct a corpus of over 2.9M Twitter posts containing hateful expressions directed at Jews, and annotate a sample dataset of 1,050 tweets. We present a statistical analysis of the annotated dataset as well as discuss annotation examples, and conclude by discussing promising directions for future work.
Abstract:Automatic extraction of narrative elements from text, combining narrative theories with computational models, has been receiving increasing attention over the last few years. Previous works have utilized the oral narrative theory by Labov and Waletzky to identify various narrative elements in personal stories texts. Instead, we direct our focus to informational texts, specifically news stories. We introduce NEAT (Narrative Elements AnnoTation) - a novel NLP task for detecting narrative elements in raw text. For this purpose, we designed a new multi-label narrative annotation scheme, better suited for informational text (e.g. news media), by adapting elements from the narrative theory of Labov and Waletzky (Complication and Resolution) and adding a new narrative element of our own (Success). We then used this scheme to annotate a new dataset of 2,209 sentences, compiled from 46 news articles from various category domains. We trained a number of supervised models in several different setups over the annotated dataset to identify the different narrative elements, achieving an average F1 score of up to 0.77. The results demonstrate the holistic nature of our annotation scheme as well as its robustness to domain category.
Abstract:In this work, we explore sources of inter-annotator disagreement in narrative analysis, in light of the question of whether or not a narrative plot exists in the text. For this purpose, we present a method for a conceptual decomposition of an existing annotation into two separate levels: (1) \textbf{whether} or not a narrative plot exists in the text, and (2) \textbf{which} plot elements exist in the text. We apply this method to an existing dataset of sentences annotated with three different narrative plot elements: \textit{Complication}, \textit{Resolution} and \textit{Success}. We then employ statistical analysis in order to quantify how much of the inter-annotator disagreement can be explained by each of the two levels. We further perform a qualitative analysis of disagreement cases in each level, observing several sources of disagreement, such as text ambiguity, scheme definition and personal differences between the annotators. The insights gathered on the dataset may serve to reduce inter-annotator disagreement in future annotation endeavors. We conclude with a broader discussion on the potential implications of our approach in studying and evaluating inter-annotator disagreement in other settings.