Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, KRG, Iraq, Network Department, College of Computer Science and Information Technology, Kirkuk University, Kirkuk, KRG, Iraq
Abstract:This paper presents a multi-objective version of the Cat Swarm Optimization Algorithm called the Grid-based Multi-objective Cat Swarm Optimization Algorithm (GMOCSO). Convergence and diversity preservation are the two main goals pursued by modern multi-objective algorithms to yield robust results. To achieve these goals, we first replace the roulette wheel method of the original CSO algorithm with a greedy method. Then, two key concepts from Pareto Archived Evolution Strategy Algorithm (PAES) are adopted: the grid system and double archive strategy. Several test functions and a real-world scenario called the Pressure vessel design problem are used to evaluate the proposed algorithm's performance. In the experiment, the proposed algorithm is compared with other well-known algorithms using different metrics such as Reversed Generational Distance, Spacing metric, and Spread metric. The optimization results show the robustness of the proposed algorithm, and the results are further confirmed using statistical methods and graphs. Finally, conclusions and future directions were presented..
Abstract:In recent years several swarm optimization algorithms, such as Bat Algorithm (BA) have emerged, which was proposed by Xin-She Yang in 2010. The idea of the algorithm was taken from the echolocation ability of bats. Purpose: The purpose of this study is to provide the reader with a full study of the Bat Algorithm, including its limitations, the fields that the algorithm has been applied, versatile optimization problems in different domains, and all the studies that assess its performance against other meta-heuristic algorithms. Approach: Bat Algorithm is given in-depth in terms of backgrounds, characteristics, limitations, it has also displayed the algorithms that hybridized with BA (K-Medoids, Back-propagation neural network, Harmony Search Algorithm, Differential Evaluation Strategies, Enhanced Particle Swarm Optimization, and Cuckoo Search Algorithm) and their theoretical results, as well as to the modifications that have been performed of the algorithm (Modified Bat Algorithm (MBA), Enhanced Bat Algorithm (EBA), Bat Algorithm with Mutation (BAM), Uninhabited Combat Aerial Vehicle-Bat algorithm with Mutation (UCAV-BAM), Nonlinear Optimization)... Findings: Shed light on the advantages and disadvantages of this algorithm through all the researches that dealt with the algorithm in addition to the fields and applications it has addressed in the hope that it will help scientists understand and develop it. Originality/value: As far as the research community knowledge, there is no comprehensive survey study conducted on this algorithm cover{\i}ng all its aspects. Keywords: Swarm Intelligence; Nature-Inspired Algorithms; Metaheuristic Algorithms; Optimization Algorithms; Bat Algorithm.
Abstract:Whale Optimization Algorithm (WOA) is a nature-inspired meta-heuristic optimization algorithm, which was proposed by Mirjalili and Lewis in 2016. This algorithm has shown its ability to solve many problems. Comprehensive surveys have been conducted about some other nature-inspired algorithms, such as ABC, PSO, etc.Nonetheless, no survey search work has been conducted on WOA. Therefore, in this paper, a systematic and meta analysis survey of WOA is conducted to help researchers to use it in different areas or hybridize it with other common algorithms. Thus, WOA is presented in depth in terms of algorithmic backgrounds, its characteristics, limitations, modifications, hybridizations, and applications. Next, WOA performances are presented to solve different problems. Then, the statistical results of WOA modifications and hybridizations are established and compared with the most common optimization algorithms and WOA. The survey's results indicate that WOA performs better than other common algorithms in terms of convergence speed and balancing between exploration and exploitation. WOA modifications and hybridizations also perform well compared to WOA. In addition, our investigation paves a way to present a new technique by hybridizing both WOA and BAT algorithms. The BAT algorithm is used for the exploration phase, whereas the WOA algorithm is used for the exploitation phase. Finally, statistical results obtained from WOA-BAT are very competitive and better than WOA in 16 benchmarks functions. WOA-BAT also outperforms well in 13 functions from CEC2005 and 7 functions from CEC2019.