Abstract:Major winning Convolutional Neural Networks (CNNs), such as VGGNet, ResNet, DenseNet, \etc, include tens to hundreds of millions of parameters, which impose considerable computation and memory overheads. This limits their practical usage in training and optimizing for real-world applications. On the contrary, light-weight architectures, such as SqueezeNet, are being proposed to address this issue. However, they mainly suffer from low accuracy, as they have compromised between the processing power and efficiency. These inefficiencies mostly stem from following an ad-hoc designing procedure. In this work, we discuss and propose several crucial design principles for an efficient architecture design and elaborate intuitions concerning different aspects of the design procedure. Furthermore, we introduce a new layer called {\it SAF-pooling} to improve the generalization power of the network while keeping it simple by choosing best features. Based on such principles, we propose a simple architecture called {\it SimpNet}. We empirically show that SimpNet provides a good trade-off between the computation/memory efficiency and the accuracy solely based on these primitive but crucial principles. SimpNet outperforms the deeper and more complex architectures such as VGGNet, ResNet, WideResidualNet \etc, on several well-known benchmarks, while having 2 to 25 times fewer number of parameters and operations. We obtain state-of-the-art results (in terms of a balance between the accuracy and the number of involved parameters) on standard datasets, such as CIFAR10, CIFAR100, MNIST and SVHN. The implementations are available at \href{url}{https://github.com/Coderx7/SimpNet}.
Abstract:Major winning Convolutional Neural Networks (CNNs), such as AlexNet, VGGNet, ResNet, GoogleNet, include tens to hundreds of millions of parameters, which impose considerable computation and memory overhead. This limits their practical use for training, optimization and memory efficiency. On the contrary, light-weight architectures, being proposed to address this issue, mainly suffer from low accuracy. These inefficiencies mostly stem from following an ad hoc procedure. We propose a simple architecture, called SimpleNet, based on a set of designing principles, with which we empirically show, a well-crafted yet simple and reasonably deep architecture can perform on par with deeper and more complex architectures. SimpleNet provides a good tradeoff between the computation/memory efficiency and the accuracy. Our simple 13-layer architecture outperforms most of the deeper and complex architectures to date such as VGGNet, ResNet, and GoogleNet on several well-known benchmarks while having 2 to 25 times fewer number of parameters and operations. This makes it very handy for embedded system or system with computational and memory limitations. We achieved state-of-the-art result on CIFAR10 outperforming several heavier architectures, near state of the art on MNIST and competitive results on CIFAR100 and SVHN. Models are made available at: https://github.com/Coderx7/SimpleNet