Abstract:Conventional fair graph clustering methods face two primary challenges: i) They prioritize balanced clusters at the expense of cluster cohesion by imposing rigid constraints, ii) Existing methods of both individual and group-level fairness in graph partitioning mostly rely on eigen decompositions and thus, generally lack interpretability. To address these issues, we propose iFairNMTF, an individual Fairness Nonnegative Matrix Tri-Factorization model with contrastive fairness regularization that achieves balanced and cohesive clusters. By introducing fairness regularization, our model allows for customizable accuracy-fairness trade-offs, thereby enhancing user autonomy without compromising the interpretability provided by nonnegative matrix tri-factorization. Experimental evaluations on real and synthetic datasets demonstrate the superior flexibility of iFairNMTF in achieving fairness and clustering performance.
Abstract:The major challenge of learning from multi-label data has arisen from the overwhelming size of label space which makes this problem NP-hard. This problem can be alleviated by gradually involving easy to hard tags into the learning process. Besides, the utilization of a diversity maintenance approach avoids overfitting on a subset of easy labels. In this paper, we propose a self-paced multi-label learning with diversity (SPMLD) which aims to cover diverse labels with respect to its learning pace. In addition, the proposed framework is applied to an efficient correlation-based multi-label method. The non-convex objective function is optimized by an extension of the block coordinate descent algorithm. Empirical evaluations on real-world datasets with different dimensions of features and labels imply the effectiveness of the proposed predictive model.