Abstract:The customization of recommended content to users holds significant importance in enhancing user experiences across a wide spectrum of applications such as e-commerce, music, and shopping. Graph-based methods have achieved considerable performance by capturing user-item interactions. However, these methods tend to utilize randomly constructed embeddings in the dataset used for training the recommender, which lacks any user preferences. Here, we propose the concept of variational embeddings as a means of pre-training the recommender system to improve the feature propagation through the layers of graph convolutional networks (GCNs). The graph variational embedding collaborative filtering (GVECF) is introduced as a novel framework to incorporate representations learned through a variational graph auto-encoder which are embedded into a GCN-based collaborative filtering. This approach effectively transforms latent high-order user-item interactions into more trainable vectors, ultimately resulting in better performance in terms of recall and normalized discounted cumulative gain(NDCG) metrics. The experiments conducted on benchmark datasets demonstrate that our proposed method achieves up to 13.78% improvement in the recall over the test data.
Abstract:The Universal Feature Selection Tool (UniFeat) is an open-source tool developed entirely in Java for performing feature selection processes in various research areas. It provides a set of well-known and advanced feature selection methods within its significant auxiliary tools. This allows users to compare the performance of feature selection methods. Moreover, due to the open-source nature of UniFeat, researchers can use and modify it in their research, which facilitates the rapid development of new feature selection algorithms.
Abstract:The major challenge of learning from multi-label data has arisen from the overwhelming size of label space which makes this problem NP-hard. This problem can be alleviated by gradually involving easy to hard tags into the learning process. Besides, the utilization of a diversity maintenance approach avoids overfitting on a subset of easy labels. In this paper, we propose a self-paced multi-label learning with diversity (SPMLD) which aims to cover diverse labels with respect to its learning pace. In addition, the proposed framework is applied to an efficient correlation-based multi-label method. The non-convex objective function is optimized by an extension of the block coordinate descent algorithm. Empirical evaluations on real-world datasets with different dimensions of features and labels imply the effectiveness of the proposed predictive model.