Abstract:Performing gradient descent in a wide neural network is equivalent to computing the posterior mean of a Gaussian Process with the Neural Tangent Kernel (NTK-GP), for a specific choice of prior mean and with zero observation noise. However, existing formulations of this result have two limitations: i) the resultant NTK-GP assumes no noise in the observed target variables, which can result in suboptimal predictions with noisy data; ii) it is unclear how to extend the equivalence to an arbitrary prior mean, a crucial aspect of formulating a well-specified model. To address the first limitation, we introduce a regularizer into the neural network's training objective, formally showing its correspondence to incorporating observation noise into the NTK-GP model. To address the second, we introduce a \textit{shifted network} that enables arbitrary prior mean functions. This approach allows us to perform gradient descent on a single neural network, without expensive ensembling or kernel matrix inversion. Our theoretical insights are validated empirically, with experiments exploring different values of observation noise and network architectures.
Abstract:Recent work has shown that training wide neural networks with gradient descent is formally equivalent to computing the mean of the posterior distribution in a Gaussian Process (GP) with the Neural Tangent Kernel (NTK) as the prior covariance and zero aleatoric noise \parencite{jacot2018neural}. In this paper, we extend this framework in two ways. First, we show how to deal with non-zero aleatoric noise. Second, we derive an estimator for the posterior covariance, giving us a handle on epistemic uncertainty. Our proposed approach integrates seamlessly with standard training pipelines, as it involves training a small number of additional predictors using gradient descent on a mean squared error loss. We demonstrate the proof-of-concept of our method through empirical evaluation on synthetic regression.
Abstract:We address the problem of learning uncertainty-aware representations for graph-structured data. While Graph Neural Ordinary Differential Equations (GNODE) are effective in learning node representations, they fail to quantify uncertainty. To address this, we introduce Latent Graph Neural Stochastic Differential Equations (LGNSDE), which enhance GNODE by embedding randomness through Brownian motion to quantify uncertainty. We provide theoretical guarantees for LGNSDE and empirically show better performance in uncertainty quantification.