Abstract:Catastrophic forgetting in continual learning is often measured at the performance or last-layer representation level, overlooking the underlying mechanisms. We introduce a mechanistic framework that offers a geometric interpretation of catastrophic forgetting as the result of transformations to the encoding of individual features. These transformations can lead to forgetting by reducing the allocated capacity of features (worse representation) and disrupting their readout by downstream computations. Analysis of a tractable model formalizes this view, allowing us to identify best- and worst-case scenarios. Through experiments on this model, we empirically test our formal analysis and highlight the detrimental effect of depth. Finally, we demonstrate how our framework can be used in the analysis of practical models through the use of Crosscoders. We present a case study of a Vision Transformer trained on sequential CIFAR-10. Our work provides a new, feature-centric vocabulary for continual learning.
Abstract:Diffusion models are powerful generative models that achieve state-of-the-art performance in tasks such as image synthesis. However, training them demands substantial amounts of data and computational resources. Continual learning would allow for incrementally learning new tasks and accumulating knowledge, thus reusing already trained models would be possible. One potentially suitable approach is generative replay, where a copy of a generative model trained on previous tasks produces synthetic data that are interleaved with data from the current task. However, standard generative replay applied to diffusion models results in a catastrophic loss in denoising capabilities. In this paper, we propose generative distillation, an approach that distils the entire reverse process of a diffusion model. We demonstrate that our approach significantly improves the continual learning performance of generative replay with only a moderate increase in the computational costs.