Abstract:Understanding cybercrime communications is paramount for cybersecurity defence. This often involves translating communications into English for processing, interpreting, and generating timely intelligence. The problem is that translation is hard. Human translation is slow, expensive, and scarce. Machine translation is inaccurate and biased. We propose using fine-tuned Large Language Models (LLM) to generate translations that can accurately capture the nuances of cybercrime language. We apply our technique to public chats from the NoName057(16) Russian-speaking hacktivist group. Our results show that our fine-tuned LLM model is better, faster, more accurate, and able to capture nuances of the language. Our method shows it is possible to achieve high-fidelity translations and significantly reduce costs by a factor ranging from 430 to 23,000 compared to a human translator.
Abstract:Due to the proliferation of malware, defenders are increasingly turning to automation and machine learning as part of the malware detection tool-chain. However, machine learning models are susceptible to adversarial attacks, requiring the testing of model and product robustness. Meanwhile, attackers also seek to automate malware generation and evasion of antivirus systems, and defenders try to gain insight into their methods. This work proposes a new algorithm that combines Malware Evasion and Model Extraction (MEME) attacks. MEME uses model-based reinforcement learning to adversarially modify Windows executable binary samples while simultaneously training a surrogate model with a high agreement with the target model to evade. To evaluate this method, we compare it with two state-of-the-art attacks in adversarial malware creation, using three well-known published models and one antivirus product as targets. Results show that MEME outperforms the state-of-the-art methods in terms of evasion capabilities in almost all cases, producing evasive malware with an evasion rate in the range of 32-73%. It also produces surrogate models with a prediction label agreement with the respective target models between 97-99%. The surrogate could be used to fine-tune and improve the evasion rate in the future.
Abstract:Honeypots are essential tools in cybersecurity. However, most of them (even the high-interaction ones) lack the required realism to engage and fool human attackers. This limitation makes them easily discernible, hindering their effectiveness. This work introduces a novel method to create dynamic and realistic software honeypots based on Large Language Models. Preliminary results indicate that LLMs can create credible and dynamic honeypots capable of addressing important limitations of previous honeypots, such as deterministic responses, lack of adaptability, etc. We evaluated the realism of each command by conducting an experiment with human attackers who needed to say if the answer from the honeypot was fake or not. Our proposed honeypot, called shelLM, reached an accuracy rate of 0.92.
Abstract:Ransomware-as-a-service (RaaS) is increasing the scale and complexity of ransomware attacks. Understanding the internal operations behind RaaS has been a challenge due to the illegality of such activities. The recent chat leak of the Conti RaaS operator, one of the most infamous ransomware operators on the international scene, offers a key opportunity to better understand the inner workings of such organizations. This paper analyzes the main topic discussions in the Conti chat leak using machine learning techniques such as Natural Language Processing (NLP) and Latent Dirichlet Allocation (LDA), as well as visualization strategies. Five discussion topics are found: 1) Business, 2) Technical, 3) Internal tasking/Management, 4) Malware, and 5) Customer Service/Problem Solving. Moreover, the distribution of topics among Conti members shows that only 4% of individuals have specialized discussions while almost all individuals (96%) are all-rounders, meaning that their discussions revolve around the five topics. The results also indicate that a significant proportion of Conti discussions are non-tech related. This study thus highlights that running such large RaaS operations requires a workforce skilled beyond technical abilities, with individuals involved in various tasks, from management to customer service or problem solving. The discussion topics also show that the organization behind the Conti RaaS oper5086933ator shares similarities with a large firm. We conclude that, although RaaS represents an example of specialization in the cybercrime industry, only a few members are specialized in one topic, while the rest runs and coordinates the RaaS operation.
Abstract:Large Language Models (LLMs) have gained widespread popularity across diverse domains involving text generation, summarization, and various natural language processing tasks. Despite their inherent limitations, LLM-based designs have shown promising capabilities in planning and navigating open-world scenarios. This paper introduces a novel application of pre-trained LLMs as agents within cybersecurity network environments, focusing on their utility for sequential decision-making processes. We present an approach wherein pre-trained LLMs are leveraged as attacking agents in two reinforcement learning environments. Our proposed agents demonstrate similar or better performance against state-of-the-art agents trained for thousands of episodes in most scenarios and configurations. In addition, the best LLM agents perform similarly to human testers of the environment without any additional training process. This design highlights the potential of LLMs to efficiently address complex decision-making tasks within cybersecurity. Furthermore, we introduce a new network security environment named NetSecGame. The environment is designed to eventually support complex multi-agent scenarios within the network security domain. The proposed environment mimics real network attacks and is designed to be highly modular and adaptable for various scenarios.
Abstract:The ongoing rise in cyberattacks and the lack of skilled professionals in the cybersecurity domain to combat these attacks show the need for automated tools capable of detecting an attack with good performance. Attackers disguise their actions and launch attacks that consist of multiple actions, which are difficult to detect. Therefore, improving defensive tools requires their calibration against a well-trained attacker. In this work, we propose a model of an attacking agent and environment and evaluate its performance using basic Q-Learning, Naive Q-learning, and DoubleQ-Learning, all of which are variants of Q-Learning. The attacking agent is trained with the goal of exfiltrating data whereby all the hosts in the network have a non-zero detection probability. Results show that the DoubleQ-Learning agent has the best overall performance rate by successfully achieving the goal in $70\%$ of the interactions.
Abstract:Model stealing attacks have been successfully used in many machine learning domains, but there is little understanding of how these attacks work in the malware detection domain. Malware detection and, in general, security domains have very strong requirements of low false positive rates (FPR). However, these requirements are not the primary focus of the existing model stealing literature. Stealing attacks create surrogate models that perform similarly to a target model using a limited amount of queries to the target. The first stage of this study is the evaluation of active learning model stealing attacks against publicly available stand-alone machine learning malware classifiers and antivirus products (AVs). We propose a new neural network architecture for surrogate models that outperforms the existing state of the art on low FPR conditions. The surrogates were evaluated on their agreement with the targeted models. Good surrogates of the stand-alone classifiers were created with up to 99% agreement with the target models, using less than 4% of the original training dataset size. Good AV surrogates were also possible to train, but with a lower agreement. The second stage used the best surrogates as well as the target models to generate adversarial malware using the MAB framework to test stand-alone models and AVs (offline and online). Results showed that surrogate models could generate adversarial samples that evade the targets but are less successful than the targets themselves. Using surrogates, however, is a necessity for attackers, given that attacks against AVs are extremely time-consuming and easily detected when the AVs are connected to the internet.
Abstract:Active Directory (AD) is a crucial element of large organizations, given its central role in managing access to resources. Since AD is used by all users in the organization, it is hard to detect attackers. We propose to generate and place fake users (honeyusers) in AD structures to help detect attacks. However, not any honeyuser will attract attackers. Our method generates honeyusers with a Variational Autoencoder that enriches the AD structure with well-positioned honeyusers. It first learns the embeddings of the original nodes and edges in the AD, then it uses a modified Bidirectional DAG-RNN to encode the parameters of the probability distribution of the latent space of node representations. Finally, it samples nodes from this distribution and uses an MLP to decide where the nodes are connected. The model was evaluated by the similarity of the generated AD with the original, by the positions of the new nodes, by the similarity with GraphRNN and finally by making real intruders attack the generated AD structure to see if they select the honeyusers. Results show that our machine learning model is good enough to generate well-placed honeyusers for existing AD structures so that intruders are lured into them.
Abstract:As machine learning becomes more widely used, the need to study its implications in security and privacy becomes more urgent. Research on the security aspects of machine learning, such as adversarial attacks, has received a lot of focus and publicity, but privacy related attacks have received less attention from the research community. Although there is a growing body of work in the area, there is yet no extensive analysis of privacy related attacks. To contribute into this research line we analyzed more than 40 papers related to privacy attacks against machine learning that have been published during the past seven years. Based on this analysis, an attack taxonomy is proposed together with a threat model that allows the categorization of the different attacks based on the adversarial knowledge and the assets under attack. In addition, a detailed analysis of the different attacks is presented, including the models under attack and the datasets used, as well as the common elements and main differences between the approaches under the defined threat model. Finally, we explore the potential reasons for privacy leaks and present an overview of the most common proposed defenses.
Abstract:Domain Name Service is a trusted protocol made for name resolution, but during past years some approaches have been developed to use it for data transfer. DNS Tunneling is a method where data is encoded inside DNS queries, allowing information exchange through the DNS. This characteristic is attractive to hackers who exploit DNS Tunneling method to establish bidirectional communication with machines infected with malware with the objective of exfiltrating data or sending instructions in an obfuscated way. To detect these threats fast and accurately, the present work proposes a detection approach based on a Convolutional Neural Network (CNN) with a minimal architecture complexity. Due to the lack of quality datasets for evaluating DNS Tunneling connections, we also present a detailed construction and description of a novel dataset that contains DNS Tunneling domains generated with five well-known DNS tools. Despite its simple architecture, the resulting CNN model correctly detected more than 92% of total Tunneling domains with a false positive rate close to 0.8%.