Abstract:The transition towards patient-centric healthcare necessitates a comprehensive understanding of patient journeys, which encompass all healthcare experiences and interactions across the care spectrum. Existing healthcare data systems are often fragmented and lack a holistic representation of patient trajectories, creating challenges for coordinated care and personalized interventions. Patient Journey Knowledge Graphs (PJKGs) represent a novel approach to addressing the challenge of fragmented healthcare data by integrating diverse patient information into a unified, structured representation. This paper presents a methodology for constructing PJKGs using Large Language Models (LLMs) to process and structure both formal clinical documentation and unstructured patient-provider conversations. These graphs encapsulate temporal and causal relationships among clinical encounters, diagnoses, treatments, and outcomes, enabling advanced temporal reasoning and personalized care insights. The research evaluates four different LLMs, such as Claude 3.5, Mistral, Llama 3.1, and Chatgpt4o, in their ability to generate accurate and computationally efficient knowledge graphs. Results demonstrate that while all models achieved perfect structural compliance, they exhibited variations in medical entity processing and computational efficiency. The paper concludes by identifying key challenges and future research directions. This work contributes to advancing patient-centric healthcare through the development of comprehensive, actionable knowledge graphs that support improved care coordination and outcome prediction.
Abstract:This paper presents ClinicSum, a novel framework designed to automatically generate clinical summaries from patient-doctor conversations. It utilizes a two-module architecture: a retrieval-based filtering module that extracts Subjective, Objective, Assessment, and Plan (SOAP) information from conversation transcripts, and an inference module powered by fine-tuned Pre-trained Language Models (PLMs), which leverage the extracted SOAP data to generate abstracted clinical summaries. To fine-tune the PLM, we created a training dataset of consisting 1,473 conversations-summaries pair by consolidating two publicly available datasets, FigShare and MTS-Dialog, with ground truth summaries validated by Subject Matter Experts (SMEs). ClinicSum's effectiveness is evaluated through both automatic metrics (e.g., ROUGE, BERTScore) and expert human assessments. Results show that ClinicSum outperforms state-of-the-art PLMs, demonstrating superior precision, recall, and F-1 scores in automatic evaluations and receiving high preference from SMEs in human assessment, making it a robust solution for automated clinical summarization.