Abstract:Tomographic imaging is in general an ill-posed inverse problem. Typically, a single regularized image estimate of the sought-after object is obtained from tomographic measurements. However, there may be multiple objects that are all consistent with the same measurement data. The ability to generate such alternate solutions is important because it may enable new assessments of imaging systems. In principle, this can be achieved by means of posterior sampling methods. In recent years, deep neural networks have been employed for posterior sampling with promising results. However, such methods are not yet for use with large-scale tomographic imaging applications. On the other hand, empirical sampling methods may be computationally feasible for large-scale imaging systems and enable uncertainty quantification for practical applications. Empirical sampling involves solving a regularized inverse problem within a stochastic optimization framework in order to obtain alternate data-consistent solutions. In this work, we propose a new empirical sampling method that computes multiple solutions of a tomographic inverse problem that are consistent with the same acquired measurement data. The method operates by repeatedly solving an optimization problem in the latent space of a style-based generative adversarial network (StyleGAN), and was inspired by the Photo Upsampling via Latent Space Exploration (PULSE) method that was developed for super-resolution tasks. The proposed method is demonstrated and analyzed via numerical studies that involve two stylized tomographic imaging modalities. These studies establish the ability of the method to perform efficient empirical sampling and uncertainty quantification.
Abstract:In order to objectively assess new medical imaging technologies via computer-simulations, it is important to account for all sources of variability that contribute to image data. One important source of variability that can significantly limit observer performance is associated with the variability in the ensemble of objects to-be-imaged. This source of variability can be described by stochastic object models (SOMs), which are generative models that can be employed to sample from a distribution of to-be-virtually-imaged objects. It is generally desirable to establish SOMs from experimental imaging measurements acquired by use of a well-characterized imaging system, but this task has remained challenging. Deep generative neural networks, such as generative adversarial networks (GANs) hold potential for such tasks. To establish SOMs from imaging measurements, an AmbientGAN has been proposed that augments a GAN with a measurement operator. However, the original AmbientGAN could not immediately benefit from modern training procedures and GAN architectures, which limited its ability to be applied to realistically sized medical image data. To circumvent this, in this work, a modified AmbientGAN training strategy is proposed that is suitable for modern progressive or multi-resolution training approaches such as employed in the Progressive Growing of GANs and Style-based GANs. AmbientGANs established by use of the proposed training procedure are systematically validated in a controlled way by use of computer-simulated measurement data corresponding to a stylized imaging system. Finally, emulated single-coil experimental magnetic resonance imaging data are employed to demonstrate the methods under less stylized conditions.
Abstract:Medical imaging systems are commonly assessed and optimized by use of objective-measures of image quality (IQ) that quantify the performance of an observer at specific tasks. Variation in the objects to-be-imaged is an important source of variability that can significantly limit observer performance. This object variability can be described by stochastic object models (SOMs). In order to establish SOMs that can accurately model realistic object variability, it is desirable to use experimental data. To achieve this, an augmented generative adversarial network (GAN) architecture called AmbientGAN has been developed and investigated. However, AmbientGANs cannot be immediately trained by use of advanced GAN training methods such as the progressive growing of GANs (ProGANs). Therefore, the ability of AmbientGANs to establish realistic object models is limited. To circumvent this, a progressively-growing AmbientGAN (ProAmGAN) has been proposed. However, ProAmGANs are designed for generating two-dimensional (2D) images while medical imaging modalities are commonly employed for imaging three-dimensional (3D) objects. Moreover, ProAmGANs that employ traditional generator architectures lack the ability to control specific image features such as fine-scale textures that are frequently considered when optimizing imaging systems. In this study, we address these limitations by proposing two advanced AmbientGAN architectures: 3D ProAmGANs and Style-AmbientGANs (StyAmGANs). Stylized numerical studies involving magnetic resonance (MR) imaging systems are conducted. The ability of 3D ProAmGANs to learn 3D SOMs from imaging measurements and the ability of StyAmGANs to control fine-scale textures of synthesized objects are demonstrated.
Abstract:Tomographic image reconstruction is generally an ill-posed linear inverse problem. Such ill-posed inverse problems are typically regularized using prior knowledge of the sought-after object property. Recently, deep neural networks have been actively investigated for regularizing image reconstruction problems by learning a prior for the object properties from training images. However, an analysis of the prior information learned by these deep networks and their ability to generalize to data that may lie outside the training distribution is still being explored. An inaccurate prior might lead to false structures being hallucinated in the reconstructed image and that is a cause for serious concern in medical imaging. In this work, we propose to illustrate the effect of the prior imposed by a reconstruction method by decomposing the image estimate into generalized measurement and null components. The concept of a hallucination map is introduced for the general purpose of understanding the effect of the prior in regularized reconstruction methods. Numerical studies are conducted corresponding to a stylized tomographic imaging modality. The behavior of different reconstruction methods under the proposed formalism is discussed with the help of the numerical studies.
Abstract:It has been advocated that medical imaging systems and reconstruction algorithms should be assessed and optimized by use of objective measures of image quality that quantify the performance of an observer at specific diagnostic tasks. One important source of variability that can significantly limit observer performance is variation in the objects to-be-imaged. This source of variability can be described by stochastic object models (SOMs). A SOM is a generative model that can be employed to establish an ensemble of to-be-imaged objects with prescribed statistical properties. In order to accurately model variations in anatomical structures and object textures, it is desirable to establish SOMs from experimental imaging measurements acquired by use of a well-characterized imaging system. Deep generative neural networks, such as generative adversarial networks (GANs) hold great potential for this task. However, conventional GANs are typically trained by use of reconstructed images that are influenced by the effects of measurement noise and the reconstruction process. To circumvent this, an AmbientGAN has been proposed that augments a GAN with a measurement operator. However, the original AmbientGAN could not immediately benefit from modern training procedures, such as progressive growing, which limited its ability to be applied to realistically sized medical image data. To circumvent this, in this work, a new Progressive Growing AmbientGAN (ProAmGAN) strategy is developed for establishing SOMs from medical imaging measurements. Stylized numerical studies corresponding to common medical imaging modalities are conducted to demonstrate and validate the proposed method for establishing SOMs.
Abstract:Medical image reconstruction is typically an ill-posed inverse problem. In order to address such ill-posed problems, the prior distribution of the sought after object property is usually incorporated by means of some sparsity-promoting regularization. Recently, prior distributions for images estimated using generative adversarial networks (GANs) have shown great promise in regularizing some of these image reconstruction problems. In this work, we apply an image-adaptive GAN-based reconstruction method (IAGAN) to reconstruct high fidelity images from incomplete medical imaging data. It is observed that the IAGAN method can potentially recover fine structures in the object that are relevant for medical diagnosis but may be oversmoothed in reconstructions with traditional sparsity-promoting regularization.
Abstract:The objective optimization of medical imaging systems requires full characterization of all sources of randomness in the measured data, which includes the variability within the ensemble of objects to-be-imaged. This can be accomplished by establishing a stochastic object model (SOM) that describes the variability in the class of objects to-be-imaged. Generative adversarial networks (GANs) can be potentially useful to establish SOMs because they hold great promise to learn generative models that describe the variability within an ensemble of training data. However, because medical imaging systems record imaging measurements that are noisy and indirect representations of object properties, GANs cannot be directly applied to establish stochastic models of objects to-be-imaged. To address this issue, an augmented GAN architecture named AmbientGAN was developed to establish SOMs from noisy and indirect measurement data. However, because the adversarial training can be unstable, the applicability of the AmbientGAN can be potentially limited. In this work, we propose a novel training strategy---Progressive Growing of AmbientGANs (ProAGAN)---to stabilize the training of AmbientGANs for establishing SOMs from noisy and indirect imaging measurements. An idealized magnetic resonance (MR) imaging system and clinical MR brain images are considered. The proposed methodology is evaluated by comparing signal detection performance computed by use of ProAGAN-generated synthetic images and images that depict the true object properties.