Abstract:Semantic inpainting or image completion alludes to the task of inferring arbitrary large missing regions in images based on image semantics. Since the prediction of image pixels requires an indication of high-level context, this makes it significantly tougher than image completion, which is often more concerned with correcting data corruption and removing entire objects from the input image. On the other hand, image enhancement attempts to eliminate unwanted noise and blur from the image, along with sustaining most of the image details. Efficient image completion and enhancement model should be able to recover the corrupted and masked regions in images and then refine the image further to increase the quality of the output image. Generative Adversarial Networks (GAN), have turned out to be helpful in picture completion tasks. In this chapter, we will discuss the underlying GAN architecture and how they can be used used for image completion tasks.
Abstract:Image processing concepts can visualize the different anatomy structure of the human body. Recent advancements in the field of deep learning have made it possible to detect the growth of cancerous tissue just by a patient's brain Magnetic Resonance Imaging (MRI) scans. These methods require very high accuracy and meager false negative rates to be of any practical use. This paper presents a Convolutional Neural Network (CNN) based transfer learning approach to classify the brain MRI scans into two classes using three pre-trained models. The performances of these models are compared with each other. Experimental results show that the Resnet-50 model achieves the highest accuracy and least false negative rates as 95% and zero respectively. It is followed by VGG-16 and Inception-V3 model with an accuracy of 90% and 55% respectively.
Abstract:Skin Cancer is one of the most deathful of all the cancers. It is bound to spread to different parts of the body on the off chance that it is not analyzed and treated at the beginning time. It is mostly because of the abnormal growth of skin cells, often develops when the body is exposed to sunlight. The Detection Furthermore, the characterization of skin malignant growth in the beginning time is a costly and challenging procedure. It is classified where it develops and its cell type. High Precision and recall are required for the classification of lesions. The paper aims to use MNIST HAM-10000 dataset containing dermoscopy images. The objective is to propose a system that detects skin cancer and classifies it in different classes by using the Convolution Neural Network. The diagnosing methodology uses Image processing and deep learning model. The dermoscopy image of skin cancer taken, undergone various techniques to remove the noise and picture resolution. The image count is also increased by using various image augmentation techniques. In the end, the Transfer Learning method is used to increase the classification accuracy of the images further. Our CNN model gave a weighted average Precision of 0.88, a weighted Recall average of 0.74, and a weighted f1-score of 0.77. The transfer learning approach applied using ResNet model yielded an accuracy of 90.51%
Abstract:The intensive care units (ICUs) are responsible for generating a wealth of useful data in the form of Electronic Health Record (EHR). This data allows for the development of a prediction tool with perfect knowledge backing. We aimed to build a mortality prediction model on 2012 Physionet Challenge mortality prediction database of 4000 patients admitted in ICU. The challenges in the dataset, such as high dimensionality, imbalanced distribution, and missing values were tackled with analytical methods and tools via feature engineering and new variable construction. The objective of the research is to utilize the relations among the clinical variables and construct new variables which would establish the effectiveness of 1-Dimensional Convolutional Neural Network (1- D CNN) with constructed features. Its performance with the traditional machine learning algorithms like XGBoost classifier, Support Vector Machine (SVM), K-Neighbours Classifier (K-NN), and Random Forest Classifier (RF) is compared for Area Under Curve (AUC). The investigation reveals the best AUC of 0.848 using 1-D CNN model.