Abstract:Neural operators serve as universal approximators for general continuous operators. In this paper, we derive the approximation rate of solution operators for the nonlinear parabolic partial differential equations (PDEs), contributing to the quantitative approximation theorem for solution operators of nonlinear PDEs. Our results show that neural operators can efficiently approximate these solution operators without the exponential growth in model complexity, thus strengthening the theoretical foundation of neural operators. A key insight in our proof is to transfer PDEs into the corresponding integral equations via Duahamel's principle, and to leverage the similarity between neural operators and Picard's iteration, a classical algorithm for solving PDEs. This approach is potentially generalizable beyond parabolic PDEs to a range of other equations, including the Navier-Stokes equation, nonlinear Schr\"odinger equations and nonlinear wave equations, which can be solved by Picard's iteration.
Abstract:Training neural networks that require adversarial optimization, such as generative adversarial networks (GANs) and unsupervised domain adaptations (UDAs), suffers from instability. This instability problem comes from the difficulty of the minimax optimization, and there have been various approaches in GANs and UDAs to overcome this problem. In this study, we tackle this problem theoretically through a functional analysis. Specifically, we show the convergence property of the minimax problem by the gradient descent over the infinite-dimensional spaces of continuous functions and probability measures under certain conditions. Using this setting, we can discuss GANs and UDAs comprehensively, which have been studied independently. In addition, we show that the conditions necessary for the convergence property are interpreted as stabilization techniques of adversarial training such as the spectral normalization and the gradient penalty.