Abstract:Large Language Models (LLMs) have recently shown remarkable advancement in various NLP tasks. As such, a popular trend has emerged lately where NLP researchers extract word/sentence/document embeddings from these large decoder-only models and use them for various inference tasks with promising results. However, it is still unclear whether the performance improvement of LLM-induced embeddings is merely because of scale or whether underlying embeddings they produce significantly differ from classical encoding models like Word2Vec, GloVe, Sentence-BERT (SBERT) or Universal Sentence Encoder (USE). This is the central question we investigate in the paper by systematically comparing classical decontextualized and contextualized word embeddings with the same for LLM-induced embeddings. Our results show that LLMs cluster semantically related words more tightly and perform better on analogy tasks in decontextualized settings. However, in contextualized settings, classical models like SimCSE often outperform LLMs in sentence-level similarity assessment tasks, highlighting their continued relevance for fine-grained semantics.
Abstract:A species' genetic code or genome encodes valuable evolutionary, biological, and phylogenetic information that aids in species recognition, taxonomic classification, and understanding genetic predispositions like drug resistance and virulence. However, the vast number of potential species poses significant challenges in developing a general-purpose whole genome classification tool. Traditional bioinformatics tools have made notable progress but lack scalability and are computationally expensive. Machine learning-based frameworks show promise but must address the issue of large classification vocabularies with long-tail distributions. In this study, we propose addressing this problem through zero-shot learning using TEPI, Taxonomy-aware Embedding and Pseudo-Imaging. We represent each genome as pseudo-images and map them to a taxonomy-aware embedding space for reasoning and classification. This embedding space captures compositional and phylogenetic relationships of species, enabling predictions in extensive search spaces. We evaluate TEPI using two rigorous zero-shot settings and demonstrate its generalization capabilities qualitatively on curated, large-scale, publicly sourced data.