Abstract:We study the representative arm identification (RAI) problem in the multi-armed bandits (MAB) framework, wherein we have a collection of arms, each associated with an unknown reward distribution. An underlying instance is defined by a partitioning of the arms into clusters of predefined sizes, such that for any $j > i$, all arms in cluster $i$ have a larger mean reward than those in cluster $j$. The goal in RAI is to reliably identify a certain prespecified number of arms from each cluster, while using as few arm pulls as possible. The RAI problem covers as special cases several well-studied MAB problems such as identifying the best arm or any $M$ out of the top $K$, as well as both full and coarse ranking. We start by providing an instance-dependent lower bound on the sample complexity of any feasible algorithm for this setting. We then propose two algorithms, based on the idea of confidence intervals, and provide high probability upper bounds on their sample complexity, which orderwise match the lower bound. Finally, we do an empirical comparison of both algorithms along with an LUCB-type alternative on both synthetic and real-world datasets, and demonstrate the superior performance of our proposed schemes in most cases.
Abstract:In recent decades, large-scale sky surveys such as Sloan Digital Sky Survey (SDSS) have resulted in generation of tremendous amount of data. The classification of this enormous amount of data by astronomers is time consuming. To simplify this process, in 2007 a volunteer-based citizen science project called Galaxy Zoo was introduced, which has reduced the time for classification by a good extent. However, in this modern era of deep learning, automating this classification task is highly beneficial as it reduces the time for classification. For the last few years, many algorithms have been proposed which happen to do a phenomenal job in classifying galaxies into multiple classes. But all these algorithms tend to classify galaxies into less than six classes. However, after considering the minute information which we know about galaxies, it is necessary to classify galaxies into more than eight classes. In this study, a neural network model is proposed so as to classify SDSS data into 10 classes from an extended Hubble Tuning Fork. Great care is given to disc edge and disc face galaxies, distinguishing between a variety of substructures and minute features which are associated with each class. The proposed model consists of convolution layers to extract features making this method fully automatic. The achieved test accuracy is 84.73 per cent which happens to be promising after considering such minute details in classes. Along with convolution layers, the proposed model has three more layers responsible for classification, which makes the algorithm consume less time.
Abstract:Solar Plages are bright chromospheric features observed in Ca II K photographic observations of the sun. These are regions of high magnetic field concentration thus tracer of magnetic activity of the Sun and are one of the most important features to study long term variability of the Sun as Ca II K spectroheliograms are recorded for more than a century. . However, detection of the plages from century-long databases is a non-trivial task and need significant human resources for doing it manually. Hence, in this study we propose an image processing algorithm which can identify solar plages from Ca II K photographic observations. The proposed study has been implemented on archival data from Kodaikanal Solar Observatory. To ensure that the algorithm works, irrespective of noise level, brightness and other image properties, we randomly draw a samples of images from data archive to test our algorithm.