Sapienza Università di Roma, Rome, Italy
Abstract:In recent years, an increasing number of Human-Robot Interaction (HRI) approaches have been implemented and evaluated in Virtual Reality (VR), as it allows to speed-up design iterations and makes it safer for the final user to evaluate and master the HRI primitives. However, identifying the most suitable VR experience is not straightforward. In this work, we evaluate how, in a smart agriculture scenario, immersive and non-immersive VR are perceived by users with respect to a speech act understanding task. In particular, we collect opinions and suggestions from the 81 participants involved in both experiments to highlight the strengths and weaknesses of these different experiences.
Abstract:Human-Robot Interaction (HRI) has become increasingly important as robots are being integrated into various aspects of daily life. One key aspect of HRI is gesture recognition, which allows robots to interpret and respond to human gestures in real-time. Gesture recognition plays an important role in non-verbal communication in HRI. To this aim, there is ongoing research on how such non-verbal communication can strengthen verbal communication and improve the system's overall efficiency, thereby enhancing the user experience with the robot. However, several challenges need to be addressed in gesture recognition systems, which include data generation, transferability, scalability, generalizability, standardization, and lack of benchmarking of the gestural systems. In this preliminary paper, we want to address the challenges of data generation using virtual reality simulations and standardization issues by presenting gestures to some commands that can be used as a standard in ground robots.
Abstract:Human-robot interaction requires a common understanding of the operational environment, which can be provided by a representation that blends geometric and symbolic knowledge: a semantic map. Through a semantic map the robot can interpret user commands by grounding them to its sensory observations. Semantic mapping is the process that builds such a representation. Despite being fundamental to enable cognition and high-level reasoning in robotics, semantic mapping is a challenging task due to generalization to different scenarios and sensory data types. In fact, it is difficult to obtain a rich and accurate semantic map of the environment and of the objects therein. Moreover, to date, there are no frameworks that allow for a comparison of the performance in building semantic maps for a given environment. To tackle these issues we design RoSmEEry, a novel framework based on the Gazebo simulator, where we introduce an accessible and ready-to-use methodology for a systematic evaluation of semantic mapping algorithms. We release our framework, as an open-source package, with multiple simulation environments with the aim to provide a general set-up to quantitatively measure the performances in acquiring semantic knowledge about the environment.