Sapienza Università di Roma, Rome, Italy
Abstract:In recent years, an increasing number of Human-Robot Interaction (HRI) approaches have been implemented and evaluated in Virtual Reality (VR), as it allows to speed-up design iterations and makes it safer for the final user to evaluate and master the HRI primitives. However, identifying the most suitable VR experience is not straightforward. In this work, we evaluate how, in a smart agriculture scenario, immersive and non-immersive VR are perceived by users with respect to a speech act understanding task. In particular, we collect opinions and suggestions from the 81 participants involved in both experiments to highlight the strengths and weaknesses of these different experiences.
Abstract:Human-Robot Interaction (HRI) has become increasingly important as robots are being integrated into various aspects of daily life. One key aspect of HRI is gesture recognition, which allows robots to interpret and respond to human gestures in real-time. Gesture recognition plays an important role in non-verbal communication in HRI. To this aim, there is ongoing research on how such non-verbal communication can strengthen verbal communication and improve the system's overall efficiency, thereby enhancing the user experience with the robot. However, several challenges need to be addressed in gesture recognition systems, which include data generation, transferability, scalability, generalizability, standardization, and lack of benchmarking of the gestural systems. In this preliminary paper, we want to address the challenges of data generation using virtual reality simulations and standardization issues by presenting gestures to some commands that can be used as a standard in ground robots.
Abstract:The study of ancient documents provides a glimpse into our past. However, the low image quality and intricate details commonly found in these documents present significant challenges for accurate object detection. The objective of this research is to enhance object detection in ancient documents by reducing false positives and improving precision. To achieve this, we propose a method that involves the creation of synthetic datasets through computational mediation, along with the integration of visual feature extraction into the object detection process. Our approach includes associating objects with their component parts and introducing a visual feature map to enable the model to discern between different symbols and document elements. Through our experiments, we demonstrate that improved object detection has a profound impact on the field of Paleography, enabling in-depth analysis and fostering a greater understanding of these valuable historical artifacts.