Abstract:Two-sided matching markets describe a large class of problems wherein participants from one side of the market must be matched to those from the other side according to their preferences. In many real-world applications (e.g. content matching or online labor markets), the knowledge about preferences may not be readily available and must be learned, i.e., one side of the market (aka agents) may not know their preferences over the other side (aka arms). Recent research on online settings has focused primarily on welfare optimization aspects (i.e. minimizing the overall regret) while paying little attention to the game-theoretic properties such as the stability of the final matching. In this paper, we exploit the structure of stable solutions to devise algorithms that improve the likelihood of finding stable solutions. We initiate the study of the sample complexity of finding a stable matching, and provide theoretical bounds on the number of samples needed to reach a stable matching with high probability. Finally, our empirical results demonstrate intriguing tradeoffs between stability and optimality of the proposed algorithms, further complementing our theoretical findings.
Abstract:We study the computational complexity of the map redistricting problem (gerrymandering). Mathematically, the electoral district designer (gerrymanderer) attempts to partition a weighted graph into $k$ connected components (districts) such that its candidate (party) wins as many districts as possible. Prior work has principally concerned the special cases where the graph is a path or a tree. Our focus concerns the realistic case where the graph is planar. We prove that the gerrymandering problem is solvable in polynomial time in $\lambda$-outerplanar graphs, when the number of candidates and $\lambda$ are constants and the vertex weights (voting weights) are polynomially bounded. In contrast, the problem is NP-complete in general planar graphs even with just two candidates. This motivates the study of approximation algorithms for gerrymandering planar graphs. However, when the number of candidates is large, we prove it is hard to distinguish between instances where the gerrymanderer cannot win a single district and instances where the gerrymanderer can win at least one district. This immediately implies that the redistricting problem is inapproximable in polynomial time in planar graphs, unless P=NP. This conclusion appears terminal for the design of good approximation algorithms -- but it is not. The inapproximability bound can be circumvented as it only applies when the maximum number of districts the gerrymanderer can win is extremely small, say one. Indeed, for a fixed number of candidates, our main result is that there is a constant factor approximation algorithm for redistricting unweighted planar graphs, provided the optimal value is a large enough constant.
Abstract:Answering an open question by Betzler et al. [Betzler et al., JAIR'13], we resolve the parameterized complexity of the multi-winner determination problem under two famous representation voting rules: the Chamberlin-Courant (in short CC) rule [Chamberlin and Courant, APSR'83] and the Monroe rule [Monroe, APSR'95]. We show that under both rules, the problem is W[1]-hard with respect to the sum $\beta$ of misrepresentations, thereby precluding the existence of any $f(\beta) \cdot |I|^{O(1)}$ -time algorithm, where $|I|$ denotes the size of the input instance.