Abstract:Two-sided matching markets have demonstrated significant impact in many real-world applications, including school choice, medical residency placement, electric vehicle charging, ride sharing, and recommender systems. However, traditional models often assume that preferences are known, which is not always the case in modern markets, where preferences are unknown and must be learned. For example, a company may not know its preference over all job applicants a priori in online markets. Recent research has modeled matching markets as multi-armed bandit (MAB) problem and primarily focused on optimizing matching for one side of the market, while often resulting in a pessimal solution for the other side. In this paper, we adopt a welfarist approach for both sides of the market, focusing on two metrics: (1) Utilitarian welfare and (2) Rawlsian welfare, while maintaining market stability. For these metrics, we propose algorithms based on epoch Explore-Then-Commit (ETC) and analyze their regret bounds. Finally, we conduct simulated experiments to evaluate both welfare and market stability.
Abstract:Two-sided matching markets describe a large class of problems wherein participants from one side of the market must be matched to those from the other side according to their preferences. In many real-world applications (e.g. content matching or online labor markets), the knowledge about preferences may not be readily available and must be learned, i.e., one side of the market (aka agents) may not know their preferences over the other side (aka arms). Recent research on online settings has focused primarily on welfare optimization aspects (i.e. minimizing the overall regret) while paying little attention to the game-theoretic properties such as the stability of the final matching. In this paper, we exploit the structure of stable solutions to devise algorithms that improve the likelihood of finding stable solutions. We initiate the study of the sample complexity of finding a stable matching, and provide theoretical bounds on the number of samples needed to reach a stable matching with high probability. Finally, our empirical results demonstrate intriguing tradeoffs between stability and optimality of the proposed algorithms, further complementing our theoretical findings.