Abstract:Answering an open question by Betzler et al. [Betzler et al., JAIR'13], we resolve the parameterized complexity of the multi-winner determination problem under two famous representation voting rules: the Chamberlin-Courant (in short CC) rule [Chamberlin and Courant, APSR'83] and the Monroe rule [Monroe, APSR'95]. We show that under both rules, the problem is W[1]-hard with respect to the sum $\beta$ of misrepresentations, thereby precluding the existence of any $f(\beta) \cdot |I|^{O(1)}$ -time algorithm, where $|I|$ denotes the size of the input instance.
Abstract:Participatory budgeting (PB) is a democratic process where citizens jointly decide on how to allocate public funds to indivisible projects. This paper focuses on PB processes where citizens may give additional money to projects they want to see funded. We introduce a formal framework for this kind of PB with donations. Our framework also allows for diversity constraints, meaning that each project belongs to one or more types, and there are lower and upper bounds on the number of projects of the same type that can be funded. We propose three general classes of methods for aggregating the citizens' preferences in the presence of donations and analyze their axiomatic properties. Furthermore, we investigate the computational complexity of determining the outcome of a PB process with donations and of finding a citizen's optimal donation strategy.
Abstract:We study the computational complexity of candidate control in elections with few voters, that is, we consider the parameterized complexity of candidate control in elections with respect to the number of voters as a parameter. We consider both the standard scenario of adding and deleting candidates, where one asks whether a given candidate can become a winner (or, in the destructive case, can be precluded from winning) by adding or deleting few candidates, as well as a combinatorial scenario where adding/deleting a candidate automatically means adding or deleting a whole group of candidates. Considering several fundamental voting rules, our results show that the parameterized complexity of candidate control, with the number of voters as the parameter, is much more varied than in the setting with many voters.