Abstract:Surveillance footage can catch a wide range of realistic anomalies. This research suggests using a weakly supervised strategy to avoid annotating anomalous segments in training videos, which is time consuming. In this approach only video level labels are used to obtain frame level anomaly scores. Weakly supervised video anomaly detection (WSVAD) suffers from the wrong identification of abnormal and normal instances during the training process. Therefore it is important to extract better quality features from the available videos. WIth this motivation, the present paper uses better quality transformer-based features named Videoswin Features followed by the attention layer based on dilated convolution and self attention to capture long and short range dependencies in temporal domain. This gives us a better understanding of available videos. The proposed framework is validated on real-world dataset i.e. ShanghaiTech Campus dataset which results in competitive performance than current state-of-the-art methods. The model and the code are available at https://github.com/kapildeshpande/Anomaly-Detection-in-Surveillance-Videos
Abstract:With healthcare being critical aspect, health insurance has become an important scheme in minimizing medical expenses. Following this, the healthcare industry has seen a significant increase in fraudulent activities owing to increased insurance, and fraud has become a significant contributor to rising medical care expenses, although its impact can be mitigated using fraud detection techniques. To detect fraud, machine learning techniques are used. The Centers for Medicaid and Medicare Services (CMS) of the United States federal government released "Medicare Part D" insurance claims is utilized in this study to develop fraud detection system. Employing machine learning algorithms on a class-imbalanced and high dimensional medicare dataset is a challenging task. To compact such challenges, the present work aims to perform feature extraction following data sampling, afterward applying various classification algorithms, to get better performance. Feature extraction is a dimensionality reduction approach that converts attributes into linear or non-linear combinations of the actual attributes, generating a smaller and more diversified set of attributes and thus reducing the dimensions. Data sampling is commonlya used to address the class imbalance either by expanding the frequency of minority class or reducing the frequency of majority class to obtain approximately equal numbers of occurrences for both classes. The proposed approach is evaluated through standard performance metrics. Thus, to detect fraud efficiently, this study applies autoencoder as a feature extraction technique, synthetic minority oversampling technique (SMOTE) as a data sampling technique, and various gradient boosted decision tree-based classifiers as a classification algorithm. The experimental results show the combination of autoencoders followed by SMOTE on the LightGBM classifier achieved best results.
Abstract:Adversarial attacks against deep learning models have gained significant attention and recent works have proposed explanations for the existence of adversarial examples and techniques to defend the models against these attacks. Attention in computer vision has been used to incorporate focused learning of important features and has led to improved accuracy. Recently, models with attention mechanisms have been proposed to enhance adversarial robustness. Following this context, this work aims at a general understanding of the impact of attention on adversarial robustness. This work presents a comparative study of adversarial robustness of non-attention and attention based image classification models trained on CIFAR-10, CIFAR-100 and Fashion MNIST datasets under the popular white box and black box attacks. The experimental results show that the robustness of attention based models may be dependent on the datasets used i.e. the number of classes involved in the classification. In contrast to the datasets with less number of classes, attention based models are observed to show better robustness towards classification.
Abstract:Machine learning has endless applications in the health care industry. White blood cell classification is one of the interesting and promising area of research. The classification of the white blood cells plays an important part in the medical diagnosis. In practise white blood cell classification is performed by the haematologist by taking a small smear of blood and careful examination under the microscope. The current procedures to identify the white blood cell subtype is more time taking and error-prone. The computer aided detection and diagnosis of the white blood cells tend to avoid the human error and reduce the time taken to classify the white blood cells. In the recent years several deep learning approaches have been developed in the context of classification of the white blood cells that are able to identify but are unable to localize the positions of white blood cells in the blood cell image. Following this, the present research proposes to utilize YOLOv3 object detection technique to localize and classify the white blood cells with bounding boxes. With exhaustive experimental analysis, the proposed work is found to detect the white blood cell with 99.2% accuracy and classify with 90% accuracy.
Abstract:Brain tumor is the most common and deadliest disease that can be found in all age groups. Generally, MRI modality is adopted for identifying and diagnosing tumors by the radiologists. The correct identification of tumor regions and its type can aid to diagnose tumors with the followup treatment plans. However, for any radiologist analysing such scans is a complex and time-consuming task. Motivated by the deep learning based computer-aided-diagnosis systems, this paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to classify and segment the brain tumor regions using MRI images. The MAG-Net is trained and evaluated on the Figshare dataset that includes coronal, axial, and sagittal views with 3 types of tumors meningioma, glioma, and pituitary tumor. With exhaustive experimental trials the model achieved promising results as compared to existing state-of-the-art models, while having least number of training parameters among other state-of-the-art models.
Abstract:With the advancement in the technology sector spanning over every field, a huge influx of information is inevitable. Among all the opportunities that the advancements in the technology have brought, one of them is to propose efficient solutions for data retrieval. This means that from an enormous pile of data, the retrieval methods should allow the users to fetch the relevant and recent data over time. In the field of entertainment and e-commerce, recommender systems have been functioning to provide the aforementioned. Employing the same systems in the medical domain could definitely prove to be useful in variety of ways. Following this context, the goal of this paper is to propose collaborative filtering based recommender system in the healthcare sector to recommend remedies based on the symptoms experienced by the patients. Furthermore, a new dataset is developed consisting of remedies concerning various diseases to address the limited availability of the data. The proposed recommender system accepts the prognostic markers of a patient as the input and generates the best remedy course. With several experimental trials, the proposed model achieved promising results in recommending the possible remedy for given prognostic markers.
Abstract:With increasing popularity of social media platforms hate speech is emerging as a major concern, where it expresses abusive speech that targets specific group characteristics, such as gender, religion or ethnicity to spread violence. Earlier people use to verbally deliver hate speeches but now with the expansion of technology, some people are deliberately using social media platforms to spread hate by posting, sharing, commenting, etc. Whether it is Christchurch mosque shootings or hate crimes against Asians in west, it has been observed that the convicts are very much influenced from hate text present online. Even though AI systems are in place to flag such text but one of the key challenges is to reduce the false positive rate (marking non hate as hate), so that these systems can detect hate speech without undermining the freedom of expression. In this paper, we use ETHOS hate speech detection dataset and analyze the performance of hate speech detection classifier by replacing or integrating the word embeddings (fastText (FT), GloVe (GV) or FT + GV) with static BERT embeddings (BE). With the extensive experimental trails it is observed that the neural network performed better with static BE compared to using FT, GV or FT + GV as word embeddings. In comparison to fine-tuned BERT, one metric that significantly improved is specificity.
Abstract:Sentiment analysis can provide a suitable lead for the tools used in software engineering along with the API recommendation systems and relevant libraries to be used. In this context, the existing tools like SentiCR, SentiStrength-SE, etc. exhibited low f1-scores that completely defeats the purpose of deployment of such strategies, thereby there is enough scope for performance improvement. Recent advancements show that transformer based pre-trained models (e.g., BERT, RoBERTa, ALBERT, etc.) have displayed better results in the text classification task. Following this context, the present research explores different BERT-based models to analyze the sentences in GitHub comments, Jira comments, and Stack Overflow posts. The paper presents three different strategies to analyse BERT based model for sentiment analysis, where in the first strategy the BERT based pre-trained models are fine-tuned; in the second strategy an ensemble model is developed from BERT variants, and in the third strategy a compressed model (Distil BERT) is used. The experimental results show that the BERT based ensemble approach and the compressed BERT model attain improvements by 6-12% over prevailing tools for the F1 measure on all three datasets.
Abstract:Worldwide, several cases go undiagnosed due to poor healthcare support in remote areas. In this context, a centralized system is needed for effective monitoring and analysis of the medical records. A web-based patient diagnostic system is a central platform to store the medical history and predict the possible disease based on the current symptoms experienced by a patient to ensure faster and accurate diagnosis. Early disease prediction can help the users determine the severity of the disease and take quick action. The proposed web-based disease prediction system utilizes machine learning based classification techniques on a data set acquired from the National Centre of Disease Control (NCDC). $K$-nearest neighbor (K-NN), random forest and naive bayes classification approaches are utilized and an ensemble voting algorithm is also proposed where each classifier is assigned weights dynamically based on the prediction confidence. The proposed system is also equipped with a recommendation scheme to recommend the type of tests based on the existing symptoms of the patient, so that necessary precautions can be taken. A centralized database ensures that the medical data is preserved and there is transparency in the system. The tampering into the system is prevented by giving the no "updation" rights once the diagnosis is created.
Abstract:It is evident that the infection with this severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) starts with the upper respiratory tract and as the virus grows, the infection can progress to lungs and develop pneumonia. According to the statistics, approximately 14\% of the infected people with COVID-19 have severe cough and shortness of breath due to pneumonia, because as the viral infection increases, it damages the alveoli (small air sacs) and surrounding tissues. The conventional way of COVID-19 diagnosis is reverse transcription polymerase chain reaction (RT-PCR), which is less sensitive during early stages specially, if the patient is asymptomatic that may further lead to more severe pneumonia. To overcome this problem an early diagnosis method is proposed in this paper via one-class classification approach using a novel pinball loss function based one-class support vector machine (PB-OCSVM) considering posteroanterior chest X-ray images. Recently, several automated COVID-19 diagnosis models have been proposed based on various deep learning architectures to identify pulmonary infections using publicly available chest X-ray (CXR) where the presence of less number of COVID-19 positive samples compared to other classes (normal, pneumonia and Tuberculosis) raises the challenge for unbiased learning in deep learning models that has been solved using class balancing techniques which however should be avoided in any medical diagnosis process. Inspired by this phenomenon, this article proposes a novel PB-OCSVM model to work in presence of limited COVID-19 positive CXR samples with objectives to maximize the learning efficiency while minimize the false-positive and false-negative predictions. The proposed model outperformed over recently published deep learning approaches where accuracy, precision, specificity and sensitivity are used as performance measure parameters.