Abstract:We introduce a novel CNN-based feature point detector - GLAMpoints - learned in a semi-supervised manner. Our detector extracts repeatable, stable interest points with a dense coverage, specifically designed to maximize the correct matching in a specific domain, which is in contrast to conventional techniques that optimize indirect metrics. In this paper, we apply our method on challenging retinal slitlamp images, for which classical detectors yield unsatisfactory results due to low image quality and insufficient amount of low-level features. We show that GLAMpoints significantly outperforms classical detectors as well as state-of-the-art CNN-based methods in matching and registration quality for retinal images.
Abstract:The automatic segmentation of retinal layer structures enables clinically-relevant quantification and monitoring of eye disorders over time in OCT imaging. Eyes with late-stage diseases are particularly challenging to segment, as their shape is highly warped due to pathological biomarkers. In this context, we propose a novel fully Convolutional Neural Network (CNN) architecture which combines dilated residual blocks in an asymmetric U-shape configuration, and can segment multiple layers of highly pathological eyes in one shot. We validate our approach on a dataset of late-stage AMD patients and demonstrate lower computational costs and higher performance compared to other state-of-the-art methods.