Abstract:The rapid proliferation of deep learning has revolutionized computing hardware, driving innovations to improve computationally expensive multiply-and-accumulate operations in deep neural networks. Among these innovations are integrated silicon-photonic systems that have emerged as energy-efficient platforms capable of achieving light speed computation and communication, positioning optical neural network (ONN) platforms as a transformative technology for accelerating deep learning models such as convolutional neural networks (CNNs). However, the increasing complexity of optical hardware introduces new vulnerabilities, notably the risk of hardware trojan (HT) attacks. Despite the growing interest in ONN platforms, little attention has been given to how HT-induced threats can compromise performance and security. This paper presents an in-depth analysis of the impact of such attacks on the performance of CNN models accelerated by ONN accelerators. Specifically, we show how HTs can compromise microring resonators (MRs) in a state-of-the-art non-coherent ONN accelerator and reduce classification accuracy across CNN models by up to 7.49% to 80.46% by just targeting 10% of MRs. We then propose techniques to enhance ONN accelerator robustness against these attacks and show how the best techniques can effectively recover the accuracy drops.
Abstract:Transformers have emerged as a powerful tool for natural language processing (NLP) and computer vision. Through the attention mechanism, these models have exhibited remarkable performance gains when compared to conventional approaches like recurrent neural networks (RNNs) and convolutional neural networks (CNNs). Nevertheless, transformers typically demand substantial execution time due to their extensive computations and large memory footprint. Processing in-memory (PIM) and near-memory computing (NMC) are promising solutions to accelerating transformers as they offer high compute parallelism and memory bandwidth. However, designing PIM/NMC architectures to support the complex operations and massive amounts of data that need to be moved between layers in transformer neural networks remains a challenge. We propose ARTEMIS, a mixed analog-stochastic in-DRAM accelerator for transformer models. Through employing minimal changes to the conventional DRAM arrays, ARTEMIS efficiently alleviates the costs associated with transformer model execution by supporting stochastic computing for multiplications and temporal analog accumulations using a novel in-DRAM metal-on-metal capacitor. Our analysis indicates that ARTEMIS exhibits at least 3.0x speedup, 1.8x lower energy, and 1.9x better energy efficiency compared to GPU, TPU, CPU, and state-of-the-art PIM transformer hardware accelerators.
Abstract:In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) and graph processing have emerged as transformative technologies for natural language processing (NLP), computer vision, and graph-structured data applications. However, the complex structures of these models pose challenges for acceleration on conventional electronic platforms. In this paper, we describe novel hardware accelerators based on silicon photonics to accelerate transformer neural networks that are used in LLMs and graph neural networks for graph data processing. Our analysis demonstrates that both hardware accelerators achieve at least 10.2x throughput improvement and 3.8x better energy efficiency over multiple state-of-the-art electronic hardware accelerators designed for LLMs and graph processing.
Abstract:Graph neural networks (GNNs) have emerged as a powerful approach for modelling and learning from graph-structured data. Multiple fields have since benefitted enormously from the capabilities of GNNs, such as recommendation systems, social network analysis, drug discovery, and robotics. However, accelerating and efficiently processing GNNs require a unique approach that goes beyond conventional artificial neural network accelerators, due to the substantial computational and memory requirements of GNNs. The slowdown of scaling in CMOS platforms also motivates a search for alternative implementation substrates. In this paper, we present GHOST, the first silicon-photonic hardware accelerator for GNNs. GHOST efficiently alleviates the costs associated with both vertex-centric and edge-centric operations. It implements separately the three main stages involved in running GNNs in the optical domain, allowing it to be used for the inference of various widely used GNN models and architectures, such as graph convolution networks and graph attention networks. Our simulation studies indicate that GHOST exhibits at least 10.2x better throughput and 3.8x better energy efficiency when compared to GPU, TPU, CPU and multiple state-of-the-art GNN hardware accelerators.
Abstract:Transformer neural networks are rapidly being integrated into state-of-the-art solutions for natural language processing (NLP) and computer vision. However, the complex structure of these models creates challenges for accelerating their execution on conventional electronic platforms. We propose the first silicon photonic hardware neural network accelerator called TRON for transformer-based models such as BERT, and Vision Transformers. Our analysis demonstrates that TRON exhibits at least 14x better throughput and 8x better energy efficiency, in comparison to state-of-the-art transformer accelerators.