Abstract:Sexual education aims to foster a healthy lifestyle in terms of emotional, mental and social well-being. In countries like India, where adolescents form the largest demographic group, they face significant vulnerabilities concerning sexual health. Unfortunately, sexual education is often stigmatized, creating barriers to providing essential counseling and information to this at-risk population. Consequently, issues such as early pregnancy, unsafe abortions, sexually transmitted infections, and sexual violence become prevalent. Our current proposal aims to provide a safe and trustworthy platform for sexual education to the vulnerable rural Indian population, thereby fostering the healthy and overall growth of the nation. In this regard, we strive towards designing SUKHSANDESH, a multi-staged AI-based Question Answering platform for sexual education tailored to rural India, adhering to safety guardrails and regional language support. By utilizing information retrieval techniques and large language models, SUKHSANDESH will deliver effective responses to user queries. We also propose to anonymise the dataset to mitigate safety measures and set AI guardrails against any harmful or unwanted response generation. Moreover, an innovative feature of our proposal involves integrating ``avatar therapy'' with SUKHSANDESH. This feature will convert AI-generated responses into real-time audio delivered by an animated avatar speaking regional Indian languages. This approach aims to foster empathy and connection, which is particularly beneficial for individuals with limited literacy skills. Partnering with Gram Vaani, an industry leader, we will deploy SUKHSANDESH to address sexual education needs in rural India.
Abstract:Comprehensive summaries of sessions enable an effective continuity in mental health counseling, facilitating informed therapy planning. Yet, manual summarization presents a significant challenge, diverting experts' attention from the core counseling process. This study evaluates the effectiveness of state-of-the-art Large Language Models (LLMs) in selectively summarizing various components of therapy sessions through aspect-based summarization, aiming to benchmark their performance. We introduce MentalCLOUDS, a counseling-component guided summarization dataset consisting of 191 counseling sessions with summaries focused on three distinct counseling components (aka counseling aspects). Additionally, we assess the capabilities of 11 state-of-the-art LLMs in addressing the task of component-guided summarization in counseling. The generated summaries are evaluated quantitatively using standard summarization metrics and verified qualitatively by mental health professionals. Our findings demonstrate the superior performance of task-specific LLMs such as MentalLlama, Mistral, and MentalBART in terms of standard quantitative metrics such as Rouge-1, Rouge-2, Rouge-L, and BERTScore across all aspects of counseling components. Further, expert evaluation reveals that Mistral supersedes both MentalLlama and MentalBART based on six parameters -- affective attitude, burden, ethicality, coherence, opportunity costs, and perceived effectiveness. However, these models share the same weakness by demonstrating a potential for improvement in the opportunity costs and perceived effectiveness metrics.