Abstract:Improper pain management can lead to severe physical or mental consequences, including suffering, and an increased risk of opioid dependency. Assessing the presence and severity of pain is imperative to prevent such outcomes and determine the appropriate intervention. However, the evaluation of pain intensity is challenging because different individuals experience pain differently. To overcome this, researchers have employed machine learning models to evaluate pain intensity objectively. However, these efforts have primarily focused on point estimation of pain, disregarding the inherent uncertainty and variability present in the data and model. Consequently, the point estimates provide only partial information for clinical decision-making. This study presents a neural network-based method for objective pain interval estimation, incorporating uncertainty quantification. This work explores three algorithms: the bootstrap method, lower and upper bound estimation (LossL) optimized by genetic algorithm, and modified lower and upper bound estimation (LossS) optimized by gradient descent algorithm. Our empirical results reveal that LossS outperforms the other two by providing a narrower prediction interval. As LossS outperforms, we assessed its performance in three different scenarios for pain assessment: (1) a generalized approach (single model for the entire population), (2) a personalized approach (separate model for each individual), and (3) a hybrid approach (separate model for each cluster of individuals). Our findings demonstrate the hybrid approach's superior performance, with notable practicality in clinical contexts. It has the potential to be a valuable tool for clinicians, enabling objective pain intensity assessment while taking uncertainty into account. This capability is crucial in facilitating effective pain management and reducing the risks associated with improper treatment.
Abstract:Physiological responses to pain have received increasing attention among researchers for developing an automated pain recognition sensing system. Though less explored, Blood Volume Pulse (BVP) is one of the candidate physiological measures that could help objective pain assessment. In this study, we applied machine learning techniques on BVP signals to device a non-invasive modality for pain sensing. Thirty-two healthy subjects participated in this study. First, we investigated a novel set of time-domain, frequency-domain and nonlinear dynamics features that could potentially be sensitive to pain. These include 24 features from BVP signals and 20 additional features from Inter-beat Intervals (IBIs) derived from the same BVP signals. Utilizing these features, we built machine learning models for detecting the presence of pain and its intensity. We explored different machine learning models, including Logistic Regression, Random Forest, Support Vector Machines, Adaptive Boosting (AdaBoost) and Extreme Gradient Boosting (XGBoost). Among them, we found that the XGBoost offered the best model performance for both pain classification and pain intensity estimation tasks. The ROC-AUC of the XGBoost model to detect low pain, medium pain and high pain with no pain as the baseline were 80.06 %, 85.81 %, and 90.05 % respectively. Moreover, the XGboost classifier distinguished medium pain from high pain with ROC-AUC of 91%. For the multi-class classification among three pain levels, the XGBoost offered the best performance with an average F1-score of 80.03%. Our results suggest that BVP signal together with machine learning algorithms is a promising physiological measurement for automated pain assessment. This work will have a national impact on accurate pain assessment, effective pain management, reducing drug-seeking behavior among patients, and addressing national opioid crisis.
Abstract:Pain is a serious worldwide health problem that affects a vast proportion of the population. For efficient pain management and treatment, accurate classification and evaluation of pain severity are necessary. However, this can be challenging as pain is a subjective sensation-driven experience. Traditional techniques for measuring pain intensity, e.g. self-report scales, are susceptible to bias and unreliable in some instances. Consequently, there is a need for more objective and automatic pain intensity assessment strategies. In this paper, we develop PainAttnNet (PAN), a novel transfomer-encoder deep-learning framework for classifying pain intensities with physiological signals as input. The proposed approach is comprised of three feature extraction architectures: multiscale convolutional networks (MSCN), a squeeze-and-excitation residual network (SEResNet), and a transformer encoder block. On the basis of pain stimuli, MSCN extracts short- and long-window information as well as sequential features. SEResNet highlights relevant extracted features by mapping the interdependencies among features. The third module employs a transformer encoder consisting of three temporal convolutional networks (TCN) with three multi-head attention (MHA) layers to extract temporal dependencies from the features. Using the publicly available BioVid pain dataset, we test the proposed PainAttnNet model and demonstrate that our outcomes outperform state-of-the-art models. These results confirm that our approach can be utilized for automated classification of pain intensity using physiological signals to improve pain management and treatment.
Abstract:Pain is a significant public health problem as the number of individuals with a history of pain globally keeps growing. In response, many synergistic research areas have been coming together to address pain-related issues. This work conducts a review and analysis of a vast body of pain-related literature using the keyword co-occurrence network (KCN) methodology. In this method, a set of KCNs is constructed by treating keywords as nodes and the co-occurrence of keywords as links between the nodes. Since keywords represent the knowledge components of research articles, analysis of KCNs will reveal the knowledge structure and research trends in the literature. This study extracted and analyzed keywords from 264,560 pain-related research articles indexed in IEEE, PubMed, Engineering Village, and Web of Science published between 2002 and 2021. We observed rapid growth in pain literature in the last two decades: the number of articles has grown nearly threefold, and the number of keywords has grown by a factor of 7. We identified emerging and declining research trends in sensors/methods, biomedical, and treatment tracks. We also extracted the most frequently co-occurring keyword pairs and clusters to help researchers recognize the synergies among different pain-related topics.
Abstract:Hypertension is a major risk factor for stroke, cardiovascular disease, and end-stage renal disease, and its prevalence is expected to rise dramatically. Effective hypertension management is thus critical. A particular priority is decreasing the incidence of uncontrolled hypertension. Early identification of patients at risk for uncontrolled hypertension would allow targeted use of personalized, proactive treatments. We develop machine learning models (logistic regression and recurrent neural networks) to stratify patients with respect to the risk of exhibiting uncontrolled hypertension within the coming three-month period. We trained and tested models using EHR data from 14,407 and 3,009 patients, respectively. The best model achieved an AUROC of 0.719, outperforming the simple, competitive baseline of relying prediction based on the last BP measure alone (0.634). Perhaps surprisingly, recurrent neural networks did not outperform a simple logistic regression for this task, suggesting that linear models should be included as strong baselines for predictive tasks using EHR