Abstract:Due to the extensive growth of information available online, recommender systems play a more significant role in serving people's interests. Traditional recommender systems mostly use an accuracy-focused approach to produce recommendations. Today's research suggests that this single-dimension approach can lead the system to be biased against a series of items with certain attributes. Biased recommendations across groups of items can endanger the interests of item providers along with causing user dissatisfaction with the system. This study aims to manage a new type of intersectional bias regarding the geographical origin and popularity of items in the output of state-of-the-art collaborative filtering recommender algorithms. We introduce an algorithm called MFAIR, a multi-facet post-processing bias mitigation algorithm to alleviate these biases. Extensive experiments on two real-world datasets of movies and books, enriched with the items' continents of production, show that the proposed algorithm strikes a reasonable balance between accuracy and both types of the mentioned biases. According to the results, our proposed approach outperforms a well-known competitor with no or only a slight loss of efficiency.
Abstract:In this paper, we investigate the application of end-to-end and multi-module frameworks for G2P conversion for the Persian language. The results demonstrate that our proposed multi-module G2P system outperforms our end-to-end systems in terms of accuracy and speed. The system consists of a pronunciation dictionary as our look-up table, along with separate models to handle homographs, OOVs and ezafe in Persian created using GRU and Transformer architectures. The system is sequence-level rather than word-level, which allows it to effectively capture the unwritten relations between words (cross-word information) necessary for homograph disambiguation and ezafe recognition without the need for any pre-processing. After evaluation, our system achieved a 94.48% word-level accuracy, outperforming the previous G2P systems for Persian.