Abstract:Crowd counting, i.e., estimating the number of people in a crowded area, has attracted much interest in the research community. Although many attempts have been reported, crowd counting remains an open real-world problem due to the vast scale variations in crowd density within the interested area, and severe occlusion among the crowd. In this paper, we propose a novel Pyramid Density-Aware Attention-based network, abbreviated as PDANet, that leverages the attention, pyramid scale feature and two branch decoder modules for density-aware crowd counting. The PDANet utilizes these modules to extract different scale features, focus on the relevant information, and suppress the misleading ones. We also address the variation of crowdedness levels among different images with an exclusive Density-Aware Decoder (DAD). For this purpose, a classifier evaluates the density level of the input features and then passes them to the corresponding high and low crowded DAD modules. Finally, we generate an overall density map by considering the summation of low and high crowded density maps as spatial attention. Meanwhile, we employ two losses to create a precise density map for the input scene. Extensive evaluations conducted on the challenging benchmark datasets well demonstrate the superior performance of the proposed PDANet in terms of the accuracy of counting and generated density maps over the well-known state of the arts.
Abstract:Counting people or objects with significantly varying scales and densities has attracted much interest from the research community and yet it remains an open problem. In this paper, we propose a simple but an efficient and effective network, named DENet, which is composed of two components, i.e., a detection network (DNet) and an encoder-decoder estimation network (ENet). We first run DNet on an input image to detect and count individuals who can be segmented clearly. Then, ENet is utilized to estimate the density maps of the remaining areas, where the numbers of individuals cannot be detected. We propose a modified Xception as an encoder for feature extraction and a combination of dilated convolution and transposed convolution as a decoder. In the ShanghaiTech Part A, UCF and WorldExpo'10 datasets, our DENet achieves lower Mean Absolute Error (MAE) than those of the state-of-the-art methods.