Abstract:This paper reports on the results from a pilot study investigating the impact of automatic speech recognition (ASR) technology on interpreting quality in remote healthcare interpreting settings. Employing a within-subjects experiment design with four randomised conditions, this study utilises scripted medical consultations to simulate dialogue interpreting tasks. It involves four trainee interpreters with a language combination of Chinese and English. It also gathers participants' experience and perceptions of ASR support through cued retrospective reports and semi-structured interviews. Preliminary data suggest that the availability of ASR, specifically the access to full ASR transcripts and to ChatGPT-generated summaries based on ASR, effectively improved interpreting quality. Varying types of ASR output had different impacts on the distribution of interpreting error types. Participants reported similar interactive experiences with the technology, expressing their preference for full ASR transcripts. This pilot study shows encouraging results of applying ASR to dialogue-based healthcare interpreting and offers insights into the optimal ways to present ASR output to enhance interpreter experience and performance. However, it should be emphasised that the main purpose of this study was to validate the methodology and that further research with a larger sample size is necessary to confirm these findings.
Abstract:This study explores the use of Google Translate (GT) for translating mental healthcare (MHealth) information and evaluates its accuracy, comprehensibility, and implications for multilingual healthcare communication through analysing GT output in the MHealth domain from English to Persian, Arabic, Turkish, Romanian, and Spanish. Two datasets comprising MHealth information from the UK National Health Service website and information leaflets from The Royal College of Psychiatrists were used. Native speakers of the target languages manually assessed the GT translations, focusing on medical terminology accuracy, comprehensibility, and critical syntactic/semantic errors. GT output analysis revealed challenges in accurately translating medical terminology, particularly in Arabic, Romanian, and Persian. Fluency issues were prevalent across various languages, affecting comprehension, mainly in Arabic and Spanish. Critical errors arose in specific contexts, such as bullet-point formatting, specifically in Persian, Turkish, and Romanian. Although improvements are seen in longer-text translations, there remains a need to enhance accuracy in medical and mental health terminology and fluency, whilst also addressing formatting issues for a more seamless user experience. The findings highlight the need to use customised translation engines for Mhealth translation and the challenges when relying solely on machine-translated medical content, emphasising the crucial role of human reviewers in multilingual healthcare communication.