Abstract:Object discovery, which refers to the task of localizing objects without human annotations, has gained significant attention in 2D image analysis. However, despite this growing interest, it remains under-explored in 3D data, where approaches rely exclusively on 3D motion, despite its several challenges. In this paper, we present a novel framework that leverages advances in 2D object discovery which are based on 2D motion to exploit the advantages of such motion cues being more flexible and generalizable and to bridge the gap between 2D and 3D modalities. Our primary contributions are twofold: (i) we introduce DIOD-3D, the first baseline for multi-object discovery in 3D data using 2D motion, incorporating scene completion as an auxiliary task to enable dense object localization from sparse input data; (ii) we develop xMOD, a cross-modal training framework that integrates 2D and 3D data while always using 2D motion cues. xMOD employs a teacher-student training paradigm across the two modalities to mitigate confirmation bias by leveraging the domain gap. During inference, the model supports both RGB-only and point cloud-only inputs. Additionally, we propose a late-fusion technique tailored to our pipeline that further enhances performance when both modalities are available at inference. We evaluate our approach extensively on synthetic (TRIP-PD) and challenging real-world datasets (KITTI and Waymo). Notably, our approach yields a substantial performance improvement compared with the 2D object discovery state-of-the-art on all datasets with gains ranging from +8.7 to +15.1 in F1@50 score. The code is available at https://github.com/CEA-LIST/xMOD
Abstract:3D object detection plays a crucial role in various applications such as autonomous vehicles, robotics and augmented reality. However, training 3D detectors requires a costly precise annotation, which is a hindrance to scaling annotation to large datasets. To address this challenge, we propose a weakly supervised 3D annotator that relies solely on 2D bounding box annotations from images, along with size priors. One major problem is that supervising a 3D detection model using only 2D boxes is not reliable due to ambiguities between different 3D poses and their identical 2D projection. We introduce a simple yet effective and generic solution: we build 3D proxy objects with annotations by construction and add them to the training dataset. Our method requires only size priors to adapt to new classes. To better align 2D supervision with 3D detection, our method ensures depth invariance with a novel expression of the 2D losses. Finally, to detect more challenging instances, our annotator follows an offline pseudo-labelling scheme which gradually improves its 3D pseudo-labels. Extensive experiments on the KITTI dataset demonstrate that our method not only performs on-par or above previous works on the Car category, but also achieves performance close to fully supervised methods on more challenging classes. We further demonstrate the effectiveness and robustness of our method by being the first to experiment on the more challenging nuScenes dataset. We additionally propose a setting where weak labels are obtained from a 2D detector pre-trained on MS-COCO instead of human annotations.