Abstract:We present some results concerning the dialogue behavior and inferred sentiment of a group of older adults interacting with a computer-based avatar. Our avatar is unique in its ability to hold natural dialogues on a wide range of everyday topics---27 topics in three groups, developed with the help of gerontologists. The three groups vary in ``degrees of intimacy", and as such in degrees of difficulty for the user. Each participant interacted with the avatar for 7-9 sessions over a period of 3-4 weeks; analysis of the dialogues reveals correlations such as greater verbosity for more difficult topics, increasing verbosity with successive sessions, especially for more difficult topics, stronger sentiment on topics concerned with life goals rather than routine activities, and stronger self-disclosure for more intimate topics. In addition to their intrinsic interest, these results also reflect positively on the sophistication of our dialogue system.
Abstract:We address the problem of designing a conversational avatar capable of a sequence of casual conversations with older adults. Users at risk of loneliness, social anxiety or a sense of ennui may benefit from practicing such conversations in private, at their convenience. We describe an automatic spoken dialogue manager for LISSA, an on-screen virtual agent that can keep older users involved in conversations over several sessions, each lasting 10-20 minutes. The idea behind LISSA is to improve users' communication skills by providing feedback on their non-verbal behavior at certain points in the course of the conversations. In this paper, we analyze the dialogues collected from the first session between LISSA and each of 8 participants. We examine the quality of the conversations by comparing the transcripts with those collected in a WOZ setting. LISSA's contributions to the conversations were judged by research assistants who rated the extent to which the contributions were "natural", "on track", "encouraging", "understanding", "relevant", and "polite". The results show that the automatic dialogue manager was able to handle conversation with the users smoothly and naturally.