Abstract:This paper addresses the problem of human-based driver support. Nowadays, driver support systems help users to operate safely in many driving situations. Nevertheless, these systems do not fully use the rich information that is available from sensing the human driver. In this paper, we therefore present a human-based risk model that uses driver information for improved driver support. In contrast to state of the art, our proposed risk model combines a) the current driver perception based on driver errors, such as the driver overlooking another vehicle (i.e., notice error), and b) driver personalization, such as the driver being defensive or confident. In extensive simulations of multiple interactive driving scenarios, we show that our novel human-based risk model achieves earlier warning times and reduced warning errors compared to a baseline risk model not using human driver information.
Abstract:We consider the problem of human-focused driver support. State-of-the-art personalization concepts allow to estimate parameters for vehicle control systems or driver models. However, there are currently few approaches proposed that use personalized models and evaluate the effectiveness in the form of general risk warning. In this paper, we therefore propose a warning system that estimates a personalized risk factor for the given driver based on the driver's behavior. The system afterwards is able to adapt the warning signal with personalized Risk Maps. In experiments, we show examples for longitudinal following and intersection scenarios in which the novel warning system can effectively reduce false negative errors and false positive errors compared to a baseline approach which does not use personalized driver considerations. This underlines the potential of personalization for reducing warning errors in risk warning and driver support.
Abstract:Driver support systems that include human states in the support process is an active research field. Many recent approaches allow, for example, to sense the driver's drowsiness or awareness of the driving situation. However, so far, this rich information has not been utilized much for improving the effectiveness of support systems. In this paper, we therefore propose a warning system that uses human states in the form of driver errors and can warn users in some cases of upcoming risks several seconds earlier than the state of the art systems not considering human factors. The system consists of a behavior planner Risk Maps which directly changes its prediction of the surrounding driving situation based on the sensed driver errors. By checking if this driver's behavior plan is objectively safe, a more robust and foresighted driver warning is achieved. In different simulations of a dynamic lane change and intersection scenarios, we show how the driver's behavior plan can become unsafe, given the estimate of driver errors, and experimentally validate the advantages of considering human factors.