Abstract:In this work, we expand and test the capabilities of our recently developed super-resolution (SR) model to generate high-resolution (HR) realizations of the full phase-space matter distribution, including both displacement and velocity, from computationally cheap low-resolution (LR) cosmological N-body simulations. The SR model enhances the simulation resolution by generating 512 times more tracer particles, extending into the deeply non-linear regime where complex structure formation processes take place. We validate the SR model by deploying the model in 10 test simulations of box size 100 Mpc/h, and examine the matter power spectra, bispectra and 2D power spectra in redshift space. We find the generated SR field matches the true HR result at percent level down to scales of k ~ 10 h/Mpc. We also identify and inspect dark matter halos and their substructures. Our SR model generate visually authentic small-scale structures, that cannot be resolved by the LR input, and are in good statistical agreement with the real HR results. The SR model performs satisfactorily on the halo occupation distribution, halo correlations in both real and redshift space, and the pairwise velocity distribution, matching the HR results with comparable scatter, thus demonstrating its potential in making mock halo catalogs. The SR technique can be a powerful and promising tool for modelling small-scale galaxy formation physics in large cosmological volumes.
Abstract:Cosmological simulations of galaxy formation are limited by finite computational resources. We draw from the ongoing rapid advances in Artificial Intelligence (specifically Deep Learning) to address this problem. Neural networks have been developed to learn from high-resolution (HR) image data, and then make accurate super-resolution (SR) versions of different low-resolution (LR) images. We apply such techniques to LR cosmological N-body simulations, generating SR versions. Specifically, we are able to enhance the simulation resolution by generating 512 times more particles and predicting their displacements from the initial positions. Therefore our results can be viewed as new simulation realizations themselves rather than projections, e.g., to their density fields. Furthermore, the generation process is stochastic, enabling us to sample the small-scale modes conditioning on the large-scale environment. Our model learns from only 16 pairs of LR-HR simulations, and is then able to generate SR simulations that successfully reproduce the matter power spectrum and the halo mass function of the HR targets. We successfully deploy the model in a box 1000 times larger than the training simulation box, showing that high-resolution mock surveys can be generated rapidly. We conclude that AI assistance has the potential to revolutionize modeling of small-scale galaxy formation physics in large cosmological volumes.
Abstract:We present an approach for automatic extraction of measured values from the astrophysical literature, using the Hubble constant for our pilot study. Our rules-based model -- a classical technique in natural language processing -- has successfully extracted 298 measurements of the Hubble constant, with uncertainties, from the 208,541 available arXiv astrophysics papers. We have also created an artificial neural network classifier to identify papers which report novel measurements. This classifier is applied to the available arXiv data, and is demonstrated to work well in identifying papers which are reporting new measurements. From the analysis of our results we find that reporting measurements with uncertainties and the correct units is critical information to identify novel measurements in free text. Our results correctly highlight the current tension for measurements of the Hubble constant and recover the $3.5\sigma$ discrepancy -- demonstrating that the tool presented in this paper is useful for meta-studies of astrophysical measurements from a large number of publications, and showing the potential to generalise this technique to other areas.