Abstract:High-resolution remote sensing images can provide abundant appearance information for ship detection. Although several existing methods use image super-resolution (SR) approaches to improve the detection performance, they consider image SR and ship detection as two separate processes and overlook the internal coherence between these two correlated tasks. In this paper, we explore the potential benefits introduced by image SR to ship detection, and propose an end-to-end network named ShipSRDet. In our method, we not only feed the super-resolved images to the detector but also integrate the intermediate features of the SR network with those of the detection network. In this way, the informative feature representation extracted by the SR network can be fully used for ship detection. Experimental results on the HRSC dataset validate the effectiveness of our method. Our ShipSRDet can recover the missing details from the input image and achieves promising ship detection performance.
Abstract:Over the last years, dictionary learning method has been extensively applied to deal with various computer vision recognition applications, and produced state-of-the-art results. However, when the data instances of a target domain have a different distribution than that of a source domain, the dictionary learning method may fail to perform well. In this paper, we address the cross-domain visual recognition problem and propose a simple but effective unsupervised domain adaption approach, where labeled data are only from source domain. In order to bring the original data in source and target domain into the same distribution, the proposed method forcing nearest coupled data between source and target domain to have identical sparse representations while jointly learning dictionaries for each domain, where the learned dictionaries can reconstruct original data in source and target domain respectively. So that sparse representations of original data can be used to perform visual recognition tasks. We demonstrate the effectiveness of our approach on standard datasets. Our method performs on par or better than competitive state-of-the-art methods.