Abstract:Purpose: To introduce a dual-domain reconstruction network with V-Net and K-Net for accurate MR image reconstruction from undersampled k-space data. Methods: Most state-of-the-art reconstruction methods apply U-Net or cascaded U-Nets in image domain and/or k-space domain. Nevertheless, these methods have following problems: (1) Directly applying U-Net in k-space domain is not optimal for extracting features in k-space domain; (2) Classical image-domain oriented U-Net is heavy-weight and hence is inefficient to be cascaded many times for yielding good reconstruction accuracy; (3) Classical image-domain oriented U-Net does not fully make use information of encoder network for extracting features in decoder network; and (4) Existing methods are ineffective in simultaneously extracting and fusing features in image domain and its dual k-space domain. To tackle these problems, we propose in this paper (1) an image-domain encoder-decoder sub-network called V-Net which is more light-weight for cascading and effective in fully utilizing features in the encoder for decoding, (2) a k-space domain sub-network called K-Net which is more suitable for extracting hierarchical features in k-space domain, and (3) a dual-domain reconstruction network where V-Nets and K-Nets are parallelly and effectively combined and cascaded. Results: Extensive experimental results on the challenging fastMRI dataset demonstrate that the proposed KV-Net can reconstruct high-quality images and outperform current state-of-the-art approaches with fewer parameters. Conclusions: To reconstruct images effectively and efficiently from incomplete k-space data, we have presented a parallel dual-domain KV-Net to combine K-Nets and V-Nets. The KV-Net is more lightweight than state-of-the-art methods but achieves better reconstruction performance.
Abstract:Purpose: Long scan time in phase encoding for forming complete K-space matrices is a critical drawback of MRI, making patients uncomfortable and wasting important time for diagnosing emergent diseases. This paper aims to reducing the scan time by actively and sequentially selecting partial phases in a short time so that a slice can be accurately reconstructed from the resultant slice-specific incomplete K-space matrix. Methods: A transformer based deep reinforcement learning framework is proposed for actively determining a sequence of partial phases according to reconstruction-quality based Q-value (a function of reward), where the reward is the improvement degree of reconstructed image quality. The Q-value is efficiently predicted from binary phase-indicator vectors, incomplete K-space matrices and their corresponding undersampled images with a light-weight transformer so that the sequential information of phases and global relationship in images can be used. The inverse Fourier transform is employed for efficiently computing the undersampled images and hence gaining the rewards of selecting phases. Results: Experimental results on the fastMRI dataset with original K-space data accessible demonstrate the efficiency and accuracy superiorities of proposed method. Compared with the state-of-the-art reinforcement learning based method proposed by Pineda et al., the proposed method is roughly 150 times faster and achieves significant improvement in reconstruction accuracy. Conclusions: We have proposed a light-weight transformer based deep reinforcement learning framework for generating high-quality slice-specific trajectory consisting of a small number of phases. The proposed method, called TITLE (Transformer Involved Trajectory LEarning), has remarkable superiority in phase-encode selection efficiency and image reconstruction accuracy.