Abstract:Understanding plant growth dynamics is essential for applications in agriculture and plant phenotyping. We present the Growth Modelling (GroMo) challenge, which is designed for two primary tasks: (1) plant age prediction and (2) leaf count estimation, both essential for crop monitoring and precision agriculture. For this challenge, we introduce GroMo25, a dataset with images of four crops: radish, okra, wheat, and mustard. Each crop consists of multiple plants (p1, p2, ..., pn) captured over different days (d1, d2, ..., dm) and categorized into five levels (L1, L2, L3, L4, L5). Each plant is captured from 24 different angles with a 15-degree gap between images. Participants are required to perform both tasks for all four crops with these multiview images. We proposed a Multiview Vision Transformer (MVVT) model for the GroMo challenge and evaluated the crop-wise performance on GroMo25. MVVT reports an average MAE of 7.74 for age prediction and an MAE of 5.52 for leaf count. The GroMo Challenge aims to advance plant phenotyping research by encouraging innovative solutions for tracking and predicting plant growth. The GitHub repository is publicly available at https://github.com/mriglab/GroMo-Plant-Growth-Modeling-with-Multiview-Images.
Abstract:Audio analysis is useful in many application scenarios. The state-of-the-art audio analysis approaches assume that the data distribution at training and deployment time will be the same. However, due to various real-life environmental factors, the data may encounter drift in its distribution or can encounter new classes in the late future. Thus, a one-time trained model might not perform adequately. In this paper, we characterize continual learning (CL) approaches in audio analysis. In this paper, we characterize continual learning (CL) approaches, intended to tackle catastrophic forgetting arising due to drifts. As there is no CL dataset for audio analysis, we use DCASE 2020 to 2023 datasets to create various CL scenarios for audio-based monitoring tasks. We have investigated the following CL and non-CL approaches: EWC, LwF, SI, GEM, A-GEM, GDumb, Replay, Naive, cumulative, and joint training. The study is very beneficial for researchers and practitioners working in the area of audio analysis for developing adaptive models. We observed that Replay achieved better results than other methods in the DCASE challenge data. It achieved an accuracy of 70.12% for the domain incremental scenario and an accuracy of 96.98% for the class incremental scenario.