Abstract:Dialogue Act Recognition (DAR) is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DAR problem ranging from multi-classification to structured prediction, which suffer from handcrafted feature extensions and attentive contextual structural dependencies. In this paper, we consider the problem of DAR from the viewpoint of extending richer Conditional Random Field (CRF) structural dependencies without abandoning end-to-end training. We incorporate hierarchical semantic inference with memory mechanism on the utterance modeling. We then extend structured attention network to the linear-chain conditional random field layer which takes into account both contextual utterances and corresponding dialogue acts. The extensive experiments on two major benchmark datasets Switchboard Dialogue Act (SWDA) and Meeting Recorder Dialogue Act (MRDA) datasets show that our method achieves better performance than other state-of-the-art solutions to the problem. It is a remarkable fact that our method is nearly close to the human annotator's performance on SWDA within 2% gap.
Abstract:Machine Comprehension (MC) is a challenging task in Natural Language Processing field, which aims to guide the machine to comprehend a passage and answer the given question. Many existing approaches on MC task are suffering the inefficiency in some bottlenecks, such as insufficient lexical understanding, complex question-passage interaction, incorrect answer extraction and so on. In this paper, we address these problems from the viewpoint of how humans deal with reading tests in a scientific way. Specifically, we first propose a novel lexical gating mechanism to dynamically combine the words and characters representations. We then guide the machines to read in an interactive way with attention mechanism and memory network. Finally we add a checking layer to refine the answer for insurance. The extensive experiments on two popular datasets SQuAD and TriviaQA show that our method exceeds considerable performance than most state-of-the-art solutions at the time of submission.