Abstract:Three-dimensional molecular structure generation is typically performed at the level of individual atoms, yet molecular graph generation techniques often consider fragments as their structural units. Building on the advances in frame-based protein structure generation, we extend these fragmentation ideas to 3D, treating general molecules as sets of rigid-body motifs. Utilising this representation, we employ SE(3)-equivariant generative modelling for de novo 3D molecule generation from rigid motifs. In our evaluations, we observe comparable or superior results to state-of-the-art across benchmarks, surpassing it in atom stability on GEOM-Drugs, while yielding a 2x to 10x reduction in generation steps and offering 3.5x compression in molecular representations compared to the standard atom-based methods.




Abstract:We present a large-scale evaluation of 30 cognitive biases in 20 state-of-the-art large language models (LLMs) under various decision-making scenarios. Our contributions include a novel general-purpose test framework for reliable and large-scale generation of tests for LLMs, a benchmark dataset with 30,000 tests for detecting cognitive biases in LLMs, and a comprehensive assessment of the biases found in the 20 evaluated LLMs. Our work confirms and broadens previous findings suggesting the presence of cognitive biases in LLMs by reporting evidence of all 30 tested biases in at least some of the 20 LLMs. We publish our framework code to encourage future research on biases in LLMs: https://github.com/simonmalberg/cognitive-biases-in-llms