Abstract:We present a large-scale evaluation of 30 cognitive biases in 20 state-of-the-art large language models (LLMs) under various decision-making scenarios. Our contributions include a novel general-purpose test framework for reliable and large-scale generation of tests for LLMs, a benchmark dataset with 30,000 tests for detecting cognitive biases in LLMs, and a comprehensive assessment of the biases found in the 20 evaluated LLMs. Our work confirms and broadens previous findings suggesting the presence of cognitive biases in LLMs by reporting evidence of all 30 tested biases in at least some of the 20 LLMs. We publish our framework code to encourage future research on biases in LLMs: https://github.com/simonmalberg/cognitive-biases-in-llms
Abstract:This paper uses topic modeling and bias measurement techniques to analyze and determine gender bias in English song lyrics. We utilize BERTopic to cluster 537,553 English songs into distinct topics and chart their development over time. Our analysis shows the thematic shift in song lyrics over the years, from themes of romance to the increasing sexualization of women in songs. We observe large amounts of profanity and misogynistic lyrics on various topics, especially in the overall biggest cluster. Furthermore, to analyze gender bias across topics and genres, we employ the Single Category Word Embedding Association Test (SC-WEAT) to compute bias scores for the word embeddings trained on the most popular topics as well as for each genre. We find that words related to intelligence and strength tend to show a male bias across genres, as opposed to appearance and weakness words, which are more female-biased; however, a closer look also reveals differences in biases across topics.